Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(7): e0304060, 2024.
Article in English | MEDLINE | ID: mdl-39052555

ABSTRACT

BACKGROUND: The lineage 4 (L4) of Mycobacterium tuberculosis (MTB) is not only globally prevalent but also locally dominant, surpassing other lineages, with lineage 2 (L2) following in prevalence. Despite its widespread occurrence, factors influencing the expansion of L4 and its sub-lineages remain poorly understood both at local and global levels. Therefore, this study aimed to conduct a pan-genome and identify genomic signatures linked to the elevated prevalence of L4 sublineages among extrapulmonary TB (EPTB) patients in western Ethiopia. METHODS: A cross-sectional study was conducted at an institutional level involving confirmed cases of extrapulmonary tuberculosis (EPTB) patients from August 5, 2018, to December 30, 2019. A total of 75 MTB genomes, classified under lineage 4 (L4), were used for conducting pan-genome and genome-wide association study (GWAS) analyses. After a quality check, variants were identified using MTBseq, and genomes were de novo assembled using SPAdes. Gene prediction and annotation were performed using Prokka. The pan-genome was constructed using GET_HOMOLOGUES, and its functional analysis was carried out with the Bacterial Pan-Genome Analysis tool (BPGA). For GWAS analysis, Scoary was employed with Benjamini-Hochberg correction, with a significance threshold set at p-value ≤ 0.05. RESULTS: The analysis revealed a total of 3,270 core genes, predominantly associated with orthologous groups (COG) functions, notably in the categories of '[R] General function prediction only' and '[I] Lipid transport and metabolism'. Conversely, functions related to '[N] Cell motility' and '[Q] Secondary metabolites biosynthesis, transport, and catabolism' were primarily linked to unique and accessory genes. The pan-genome of MTB L4 was found to be open. Furthermore, the GWAS study identified genomic signatures linked to the prevalence of sublineages L4.6.3 and L4.2.2.2. CONCLUSIONS: Apart from host and environmental factors, the sublineage of L4 employs distinct virulence factors for successful dissemination in western Ethiopia. Given that the functions of these newly identified genes are not well understood, it is advisable to experimentally validate their roles, particularly in the successful transmission of specific L4 sublineages over others.


Subject(s)
Genome, Bacterial , Genome-Wide Association Study , Mycobacterium tuberculosis , Tuberculosis , Humans , Ethiopia/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/genetics , Cross-Sectional Studies , Male , Female , Adult , Phylogeny , Genomics/methods , Middle Aged , Young Adult , Adolescent , Tuberculosis, Extrapulmonary
2.
mBio ; 15(8): e0003824, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38958440

ABSTRACT

The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 µm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE: Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.


Subject(s)
Alteromonas , UDPglucose 4-Epimerase , Alteromonas/genetics , Alteromonas/enzymology , Alteromonas/metabolism , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Seawater/microbiology , Whole Genome Sequencing
3.
PNAS Nexus ; 3(4): pgae126, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617584

ABSTRACT

Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following severe acute respiratory syndrome coronavirus 2, there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles the oral microbiota and inflammatory cytokines play in the pathogenesis of coronavirus disease 2019 (COVID-19) are yet to be explored. Here, we evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from noninfected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines and chemokines using multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity, while diversity increased with health. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e. microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e. multimodal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multimodal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically compromised populations.

4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38624181

ABSTRACT

Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.


Subject(s)
Bacteria , Carbon , Heterotrophic Processes , Iron , Seawater , Iron/metabolism , Carbon/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Seawater/microbiology , California , Microbiota
5.
ACS Synth Biol ; 12(11): 3215-3228, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37857380

ABSTRACT

While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.


Subject(s)
Diatoms , Diatoms/genetics , Plasmids/genetics , DNA/genetics , Gene Library , Genetic Engineering
6.
Nat Commun ; 14(1): 5918, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739935

ABSTRACT

The longstanding model is that most bloodstream infections (BSIs) are caused by a single organism. We perform whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrate that BCs contain mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibit phenotypes that are potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identify mixed fluconazole-susceptible and -resistant populations. Diversity in drug susceptibility is likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants are fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a population-based model of C. glabrata genotypic and phenotypic diversity during BSIs.


Subject(s)
Antifungal Agents , Sepsis , Humans , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida glabrata/genetics , Fluconazole/pharmacology , Fluconazole/therapeutic use , Blood Culture , Genotype
8.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Article in English | MEDLINE | ID: mdl-37667052

ABSTRACT

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Subject(s)
COVID-19 , Humans , Post-Acute COVID-19 Syndrome , RNA, Viral/genetics , SARS-CoV-2 , Antiviral Agents , Disease Progression
9.
PLoS One ; 18(8): e0289557, 2023.
Article in English | MEDLINE | ID: mdl-37535692

ABSTRACT

INTRODUCTION: Several important human pathogens that cause life-threatening infections are asymptomatically carried in the Nasopharynx/Oropharynx (NP/OP). DNA extraction is a prerequisite for most culture-independent techniques used to identify pathogens in the NP/OP. However, components of DNA extraction kits differ thereby giving rise to differences in performance. We compared the DNA concentration and the detection of three pathogens in the NP/OP using the discontinued DNeasy PowerSoil Kit (Kit DP) and the DNeasy PowerLyzer PowerSoil Kit (Kit DPP). METHODS: DNA was extracted from the same set of 103 NP/OP samples using the two kits. DNA concentration was measured using the Qubit 2.0 Fluorometer. Real-time Polymerase Chain reaction (RT-PCR) was done using the QuantStudio 7-flex system to detect three pathogens: S. pneumoniae, H. influenzae, and N. meningitidis. Bland-Altman statistics and plots were used to determine the threshold cycle (Ct) value agreement for the two kits. RESULTS: The average DNA concentration from kit DPP was higher than Kit DP; 1235.6 ng/ml (SD = 1368.3) vs 884.9 ng/ml (SD = 1095.3), p = 0.002. Using a Ct value cutoff of 40 for positivity, the concordance for the presence of S. pneumoniae was 82% (84/102); 94%(96/103) for N. meningitidis and 92%(95/103) for H. influenzae. Kit DP proportionately resulted in higher Ct values than Kit DPP for all pathogens. The Ct value bias of measurement for S. pneumoniae was +2.4 (95% CI, 1.9-3.0), +1.4 (95% CI, 0.9-1.9) for N. meningitidis and +1.4 (95% CI, 0.2-2.5) for H. influenzae. CONCLUSION: The higher DNA concentration obtained using kit DPP could increase the chances of recovering low abundant bacteria. The PCR results were reproducible for more than 90% of the samples for the gram-negative H. influenzae and N. meningitidis. Ct value variations of the kits must be taken into consideration when comparing studies that have used the two kits.


Subject(s)
Bacteria , Neisseria meningitidis , Humans , Bacteria/genetics , DNA , Neisseria meningitidis/genetics , Streptococcus pneumoniae/genetics , Real-Time Polymerase Chain Reaction , Nasopharynx , Oropharynx , Haemophilus influenzae/genetics , DNA, Bacterial/genetics
10.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205528

ABSTRACT

Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following Severe Acute Respiratory Syndrome Coronavirus 2 - SARS-CoV-2 - there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles that the oral microbiota and inflammatory cytokines play in the pathogenesis of COVID-19 are yet to be explored. We evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their Oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from non-infected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines using Luminex multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e., microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e., multi-modal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multi-modal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically naïve populations.

11.
Environ Microbiol ; 25(12): 2761-2775, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37132662

ABSTRACT

Little is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose-sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection for mshA alleles across all MAGs, suggesting that mshA provides a competitive advantage for surface colonization and nutrient acquisition. Large-scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self-assemble, compared to mature, phylogenetically and metabolically diverse biofilms.


Subject(s)
Microbiota , Plastics , Plastics/chemistry , Oceans and Seas , Biofilms , Metagenome
12.
Cell Rep ; 42(5): 112494, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37167061

ABSTRACT

During inflammation, the skin deploys antimicrobial peptides (AMPs) yet during allergic inflammation it becomes more susceptible to Staphylococcus aureus. To understand this contradiction, single-cell sequencing of Il4ra-/- mice combined with skin microbiome analysis reveals that lower production of AMPs from interleukin-4 receptor α (IL-4Rα) activation selectively inhibits survival of antibiotic-producing strains of coagulase-negative Staphylococcus (CoNS). Diminished AMPs under conditions of T helper type 2 (Th2) inflammation enable expansion of CoNS strains without antibiotic activity and increase Staphylococcus aureus (S. aureus), recapitulating the microbiome on humans with atopic dermatitis. This response is rescued in Camp-/- mice or after topical steroids, since further inhibition of AMPs enables survival of antibiotic-producing CoNS strains. In conditions of Th17 inflammation, a higher expression of host AMPs is sufficient to directly inhibit S. aureus survival. These results show that antimicrobials produced by the host and commensal bacteria each act to control S. aureus on the skin.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus/metabolism , Antimicrobial Peptides , Skin/microbiology , Inflammation , Bacteria , Staphylococcus , Anti-Bacterial Agents/metabolism
13.
Res Sq ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066226

ABSTRACT

The longstanding paradigm is that most bloodstream infections (BSIs) are caused by a single organism. We performed whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrated that BCs contained mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibited phenotypes that were potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identified mixed fluconazole-susceptible and â€"resistant populations. Diversity in drug susceptibility was likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants were fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a new population-based paradigm of C. glabrata genotypic and phenotypic diversity during BSIs.

14.
Bioresour Technol ; 351: 126936, 2022 May.
Article in English | MEDLINE | ID: mdl-35247565

ABSTRACT

Most of the discarded waste material paves their way to the utmost common dumping grounds, Landfills. Despite their widespread use, the landfill microbiomes are still not well characterized. Metagenomics approach provides insight into the identification of operational parameters influencing the microbiome composition and their biodegradation competencies. The metagenomic DNA was prepared to explore taxonomical community structure, phylogenetic relationships, and functional profile at the same time. A total of 100,021,052 high-quality filtered reads were acquired with a GC abundance of 62.59%. Taxonomical abundance revealed the dominance of phylum Proteobacteria and genes involved in biomolecules metabolism, aromatic compound degradation, stress tolerance, xenobiotic biodegradation etc. were revealed functionally. The intricate heterogeneous environment of landfill revealed well flourished biogeochemical metabolic profiles including nitrogen metabolism. This is the first study for the generated metagenome of Ghazipur landfill and the obtained results propose that microbial communities in landfill settings are far more intricate than expected. It remain mostly unexplored which demands the usage of multiple platforms for a better understanding.


Subject(s)
Metagenomics , Microbiota , Metagenome , Microbiota/genetics , Phylogeny , Waste Disposal Facilities
15.
ISME J ; 16(2): 358-369, 2022 02.
Article in English | MEDLINE | ID: mdl-34341506

ABSTRACT

It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.


Subject(s)
Alteromonas , Siderophores , Alteromonas/metabolism , Benzamides , Iron/metabolism , Oceans and Seas , Siderophores/metabolism
16.
EBioMedicine ; 73: 103644, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34695658

ABSTRACT

BACKGROUND: The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS: We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS: Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION: Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones.  Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING: The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].


Subject(s)
Energy Metabolism , Gastrointestinal Microbiome , Hormones/metabolism , Host-Pathogen Interactions , Severe Acute Malnutrition/etiology , Severe Acute Malnutrition/metabolism , Biodiversity , Cross-Sectional Studies , Disease Susceptibility , Enterobacteriaceae/pathogenicity , Feces/microbiology , Gambia/epidemiology , Humans , Metagenome , Metagenomics/methods , Phenotype , Rural Population , Severe Acute Malnutrition/diagnosis , Severe Acute Malnutrition/epidemiology , Virulence Factors
17.
Sci Adv ; 7(33)2021 08.
Article in English | MEDLINE | ID: mdl-34389536

ABSTRACT

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.


Subject(s)
Anthozoa , Heat Stress Disorders , Microbiota , Animals , Anthozoa/genetics , Coral Reefs , Heat-Shock Response/genetics , Symbiosis
18.
BMC Infect Dis ; 21(1): 348, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849482

ABSTRACT

BACKGROUND: Staphylococcus aureus has been associated with the exacerbation and severity of atopic dermatitis (AD). Studies have not investigated the colonisation dynamics of S. aureus lineages in African toddlers with AD. We determined the prevalence and population structure of S. aureus in toddlers with and without AD from rural and urban South African settings. METHODS: We conducted a study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. S. aureus was screened from skin and nasal specimens using established microbiological methods and clonal lineages were determined by spa typing. Logistic regression analyses were employed to assess risk factors associated with S. aureus colonisation. RESULTS: S. aureus colonisation was higher in cases compared to controls independent of geographic location (54% vs. 13%, p < 0.001 and 70% vs. 35%, p = 0.005 in Umtata [rural] and Cape Town [urban], respectively). Severe AD was associated with higher colonisation compared with moderate AD (86% vs. 52%, p = 0.015) among urban cases. Having AD was associated with colonisation in both rural (odds ratio [OR] 7.54, 95% CI 2.92-19.47) and urban (OR 4.2, 95% CI 1.57-11.2) toddlers. In rural toddlers, living in an electrified house that uses gas (OR 4.08, 95% CI 1.59-10.44) or utilises kerosene and paraffin (OR 2.88, 95% CI 1.22-6.77) for heating and cooking were associated with increased S. aureus colonisation. However, exposure to farm animals (OR 0.3, 95% CI 0.11-0.83) as well as living in a house that uses wood and coal (OR 0.14, 95% CI 0.04-0.49) or outdoor fire (OR 0.31, 95% CI 0.13-0.73) were protective. Spa types t174 and t1476, and t272 and t1476 were dominant among urban and rural cases, respectively, but no main spa type was observed among controls, independent of geographic location. In urban cases, spa type t002 and t442 isolates were only identified in severe AD, t174 was more frequent in moderate AD, and t1476 in severe AD. CONCLUSION: The strain genotype of S. aureus differed by AD phenotypes and rural-urban settings. Continued surveillance of colonising S. aureus lineages is key in understanding alterations in skin microbial composition associated with AD pathogenesis and exacerbation.


Subject(s)
Dermatitis, Atopic/pathology , Staphylococcal Infections/diagnosis , Staphylococcus aureus/isolation & purification , Child, Preschool , Cross-Sectional Studies , Dermatitis, Atopic/complications , Female , Genotype , Humans , Infant , Logistic Models , Male , Risk Factors , Rural Population , Severity of Illness Index , Skin/microbiology , South Africa/epidemiology , Staphylococcal Infections/complications , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Urban Population
19.
Environ Res ; 192: 110277, 2021 01.
Article in English | MEDLINE | ID: mdl-33069701

ABSTRACT

The present study discusses the genomic analysis of Bacillus sp. ISTL8 along with the production of EPS (Extracellular polymeric substances) using carbofuran, a toxic carbamate pesticide. Bacillus strain was isolated from landfill soil and evaluated for high growth rates and EPS production. One strain, renamed ISTL8 grew on a broad range of carbon sources, including toxic carbofuran, while producing copious EPS. Growth assays verified the strain to be thermophilic, low salt tolerant, and with a preference for neutral pH. SEM (Scanning Electron Microscopy) was used for morphological characterization of the EPS while the monomeric composition, bonding patterns and functional groups were deduced by GC-MS (Gas Chromatography-Mass Spectrometry), 1H and 13C NMR (Nuclear Magnetic Resonance) and FTIR (Fourier Transform Infrared Spectroscopy). The production of EPS using carbofuran (carbamate pesticide) as a carbon source was found to be 6.20 ± 0.29 g L-1 containing 61.17% w/w carbohydrates, 29.72% w/w proteins and 6.11% w/w lipids (of dry EPS). The potential cytotoxicity of EPS was evaluated with 3- (4,5-dimethyl thiazol-2-Yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and found non-toxic (2.25%). WGS (Whole genome sequencing) was performed for the strain Bacillus sp. ISTL8 producing EPS; an array of genes putatively involved in the EPS production were identified in several different genomic locations, guiding potential genetic manipulation studies in the future. The results highlight the potency of a bacterial isolate Bacillus sp. ISTL8 to produce non-cytotoxic EPS using carbofuran that can be further harnessed for environmental and commercial applications. Additionally, WGS revealed an array of EPS specific genes which can be effectively engineered for much enhanced production.


Subject(s)
Bacillus , Extracellular Polymeric Substance Matrix , Bacillus/genetics , Genomics , Soil , Spectroscopy, Fourier Transform Infrared
20.
J Proteome Res ; 20(1): 326-336, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32897077

ABSTRACT

Proteins are critical in catalyzing chemical reactions, forming key cellular structures, and in regulating cellular processes. Investigation of marine microbial proteins by metaproteomics methods enables the discovery of numerous aspects of microbial biogeochemical processes. However, these datasets present big data challenges as they often involve many samples collected across broad geospatial and temporal scales, resulting in thousands of protein identifications, abundances, and corresponding annotation information. The Ocean Protein Portal (OPP) was created to enable data sharing and discovery among multiple scientific domains and serve both research and education functions. The portal focuses on three use case questions: "Where is my protein of interest?", "Who makes it?", and "How much is there?" and provides profile and section visualizations, real-time taxonomic analysis, and links to metadata, sequence analysis, and other external resources to enable connections to be made between biogeochemical and proteomics datasets.


Subject(s)
Information Dissemination , Proteomics , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL