Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 695: 149400, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38160530

ABSTRACT

SETD2 (SET-domain containing protein 2) is a histone methyltransferase (HMT) of the SET family responsible for the trimethylation of K36 of histone H3, thus producing the epigenetic mark H3K36me3. Recent studies have shown that certain SET family HMTs, such as SMYD2, SMYD3 or SETDB1 can also methylate protein kinases and therefore be involved in signaling pathways. Here we provide structural and enzymatic evidence showing that SETD2 methylates the protein tyrosine kinase ACK1 in vitro. ACK1 is recognized as a major integrator of signaling from various receptor tyrosine kinases. Using ACK1 peptides and recombinant proteins, we show that SETD2 methylates the K514 residue of ACK1 generating K514 mono, di or tri-methylation. Interestingly, K514 is found in a "H3K36-like" motif of ACK1 which is known to be post-translationally modified and to be involved in protein-protein interaction. The crystal structure of SETD2 catalytic domain in complex with an ACK1 peptide further provides the structural basis for the methylation of ACK1 K514 by SETD2. Our work therefore strongly suggests that ACK1 could be a novel non-histone substrate of SETD2 and further supports that SET HMTs, such as SETD2, could be involved in both epigenetic regulations and cell signaling.


Subject(s)
Histones , Protein-Tyrosine Kinases , Protein-Tyrosine Kinases/metabolism , Histones/metabolism , Methylation , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational
2.
Biomed Pharmacother ; 153: 113372, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809481

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a critical regulator of different signalling cascades such as the EGFR pathway. The biological importance of PTP1B is further evidenced by knockout mice studies and the identification of recurrent mutations/deletions in PTP1B linked to metabolic and oncogenic alterations. Cisplatin is among the most widely used anticancer drug. The biological effects of cisplatin are thought to arise primarily from DNA damaging events involving cisplatin-DNA adducts. However, increasing evidence indicate that the biological properties of cisplatin could also rely on the perturbation of other processes such as cell signalling through direct interaction with certain cysteine residues in proteins. Here, we provide molecular, cellular and in vivo evidence suggesting that PTP1B is a target of cisplatin. Mechanistic studies indicate that cisplatin inhibited PTP1B in an irreversible manner and binds covalently to the catalytic cysteine residue of the enzyme. Accordingly, experiments conducted in cells and mice exposed to cisplatin showed inhibition of endogenous PTP1B and concomitant increase in tyrosine phosphorylation of EGFR. These findings are consistent with previous studies showing tyrosine phosphorylation-dependent activation of the EGFR pathway by cisplatin and with recent studies suggesting PTP1B inhibition by cisplatin and other platinum complexes. Importantly, our work provides novel mechanistic evidence that PTP1B is a protein target of cisplatin and is inhibited by this drug at molecular, cellular and in vivo levels. In addition, our work may contribute to the understanding of the pathways undergoing modulation upon cisplatin administration beyond of the established genotoxic effect of cisplatin.


Subject(s)
Cysteine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Catalytic Domain , Cisplatin/pharmacology , Cysteine/metabolism , ErbB Receptors/metabolism , Mice , Mice, Knockout , Phosphorylation , Tyrosine/metabolism
3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806030

ABSTRACT

Phosphorylation is an essential process in biological events and is considered critical for biological functions. In tissues, protein phosphorylation mainly occurs on tyrosine (Tyr), serine (Ser) and threonine (Thr) residues. The balance between phosphorylation and dephosphorylation is under the control of two super enzyme families, protein kinases (PKs) and protein phosphatases (PPs), respectively. Although there are many selective and effective drugs targeting phosphokinases, developing drugs targeting phosphatases is challenging. PTP1B, one of the most central protein tyrosine phosphatases (PTPs), is a key player in several human diseases and disorders, such as diabetes, obesity, and hematopoietic malignancies, through modulation of different signaling pathways. However, due to high conservation among PTPs, most PTP1B inhibitors lack specificity, raising the need to develop new strategies targeting this enzyme. In this mini-review, we summarize three classes of PTP1B inhibitors with different mechanisms: (1) targeting multiple aryl-phosphorylation sites including the catalytic site of PTP1B; (2) targeting allosteric sites of PTP1B; (3) targeting specific mRNA sequence of PTP1B. All three types of PTP1B inhibitors present good specificity over other PTPs and are promising for the development of efficient small molecules targeting this enzyme.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Allosteric Site , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction
4.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806064

ABSTRACT

Human protein tyrosine phosphatase 1B (PTP1B) is a ubiquitous non-receptor tyrosine phosphatase that serves as a major negative regulator of tyrosine phosphorylation cascades of metabolic and oncogenic importance such as the insulin, epidermal growth factor receptor (EGFR), and JAK/STAT pathways. Increasing evidence point to a key role of PTP1B-dependent signaling in cancer. Interestingly, genetic defects in PTP1B have been found in different human malignancies. Notably, recurrent somatic mutations and splice variants of PTP1B were identified in human B cell and Hodgkin lymphomas. In this work, we analyzed the molecular and functional levels of three PTP1B mutations identified in primary mediastinal B cell lymphoma (PMBCL) patients and located in the WPD-loop (V184D), P-loop (R221G), and Q-loop (G259V). Using biochemical, enzymatic, and molecular dynamics approaches, we show that these mutations lead to PTP1B mutants with extremely low intrinsic tyrosine phosphatase activity that display alterations in overall protein stability and in the flexibility of the active site loops of the enzyme. This is in agreement with the key role of the active site loop regions, which are preorganized to interact with the substrate and to enable catalysis. Our study provides molecular and enzymatic evidence for the loss of protein tyrosine phosphatase activity of PTP1B active-site loop mutants identified in human lymphoma.


Subject(s)
Lymphoma, B-Cell , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Catalytic Domain , Humans , Lymphoma, B-Cell/genetics , Mutation , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Tyrosine/metabolism
5.
Protein Sci ; 31(2): 538-544, 2022 02.
Article in English | MEDLINE | ID: mdl-34806245

ABSTRACT

PTPN2 is an important protein tyrosine phosphatase (PTP) that plays a key role in cell signaling. Deletions or inactivating mutations of PTPN2 have been described in different pathologies and underline its critical role in hematopoiesis, autoimmunity, and inflammation. Surprisingly, despite the major pathophysiological implications of PTPN2, the structural analysis of this PTP and notably of its pathogenic mutants remains poorly documented. Contrary to other human PTP enzymes, to date, only one structure of PTPN2 (wild-type form) has been reported. Here, we report the first crystal structure of a pathogenic mutant of PTPN2 (Cys216Gly) that causes an autoimmune enteropathy. We show in particular that this mutant adopts a classical PTP fold. More importantly, albeit inactive, the mutant retains its ability to bind substrates and to adopt the characteristic catalytically competent closed form of PTP enzymes. This novel PTPN2 structure may serve as a new tool to better understand PTP structures and the structural impacts of pathogenic mutations. Moreover, the C216G PTPN2 structure could also be helpful to design specific ligands/inhibitors.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , Humans , Polyendocrinopathies, Autoimmune/genetics , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
6.
Front Neurosci ; 15: 780698, 2021.
Article in English | MEDLINE | ID: mdl-34938157

ABSTRACT

Toxic effects of nanoparticles on female reproductive health have been documented but the underlying mechanisms still need to be clarified. Here, we investigated the effect of carbon black nanoparticles (CB NPs) on the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are key regulators of gonadal gametogenesis and steroidogenesis. To that purpose, we subjected adult female mice to a weekly non-surgical intratracheal administration of CB NPs at an occupationally relevant dose over 4 weeks. We also analyzed the effects of CB NPs in vitro, using both primary cultures of pituitary cells and the LßT2 gonadotrope cell line. We report here that exposure to CB NPs does not disrupt estrous cyclicity but increases both circulating FSH levels and pituitary FSH ß-subunit gene (Fshb) expression in female mice without altering circulating LH levels. Similarly, treatment of anterior pituitary or gonadotrope LßT2 cells with increasing concentrations of CB NPs dose-dependently up-regulates FSH but not LH gene expression or release. Moreover, CB NPs enhance the stimulatory effect of GnRH on Fshb expression in LßT2 cells without interfering with LH regulation. We provide evidence that CB NPs are internalized by LßT2 cells and rapidly activate the cAMP/PKA pathway. We further show that pharmacological inhibition of PKA significantly attenuates the stimulatory effect of CB NPs on Fshb expression. Altogether, our study demonstrates that exposure to CB NPs alters FSH but not LH expression and may thus lead to gonadotropin imbalance.

7.
Mol Pharmacol ; 100(3): 283-294, 2021 09.
Article in English | MEDLINE | ID: mdl-34266924

ABSTRACT

Human SETD2 is the unique histone methyltransferase that generates H3K36 trimethylation (H3K36me3), an epigenetic mark that plays a key role in normal hematopoiesis. Interestingly, recurrent inactivating mutations of SETD2 and aberrant H3K36me3 are increasingly reported to be involved in hematopoietic malignancies. Benzene (BZ) is a ubiquitous environmental pollutant and carcinogen that causes leukemia. The leukemogenic properties of BZ depend on its biotransformation in the bone marrow into oxidative metabolites, in particular 1,4-benzoquinone (BQ). This hematotoxic metabolite can form DNA and protein adducts that result in the damage and the alteration of cellular processes. Recent studies suggest that BZ-dependent leukemogenesis could depend on epigenetic perturbations, notably aberrant histone methylation. We investigated whether H3K36 trimethylation by SETD2 could be impacted by BZ and its hematotoxic metabolites. Herein, we show that BQ, the major leukemogenic metabolite of BZ, inhibits irreversibly the human histone methyltransferase SETD2, resulting in decreased H3K36me3. Our mechanistic studies further indicate that the BQ-dependent inactivation of SETD2 is due to covalent binding of BQ to reactive Zn-finger cysteines within the catalytic domain of the enzyme. The formation of these quinoprotein adducts results in loss of enzyme activity and protein crosslinks/oligomers. Experiments conducted in hematopoietic cells confirm that exposure to BQ results in the formation of SETD2 crosslinks/oligomers and concomitant loss of H3K36me3 in cells. Taken together, our data indicate that BQ, a major hematotoxic metabolite of BZ, could contribute to BZ-dependent leukemogenesis by perturbing the functions of SETD2, a histone lysine methyltransferase of hematopoietic relevance. SIGNIFICANCE STATEMENT: Benzoquinone is a major leukemogenic metabolite of benzene. Dysregulation of histone methyltransferase is involved in hematopoietic malignancies. This study found that benzoquinone irreversibly impairs SET domain containing 2, a histone H3K36 methyltransferase that plays a key role in hematopoiesis. Benzoquinone forms covalent adducts on Zn-finger cysteines within the catalytic site, leading to loss of activity, protein crosslinks/oligomers, and concomitant decrease of H3K36me3 histone mark. These data provide evidence that a leukemogenic metabolite of benzene can impair a key epigenetic enzyme.


Subject(s)
Benzene/metabolism , Benzene/toxicity , Benzoquinones/toxicity , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Benzene/chemistry , Benzoquinones/chemistry , Cell Line , Cysteine/chemistry , Cysteine/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Humans , Leukemia/chemically induced , Leukemia/genetics , Leukemia/metabolism , Methylation , Primary Cell Culture , Zinc Fingers/drug effects
8.
Transl Oncol ; 14(10): 101169, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34243013

ABSTRACT

Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.

9.
Free Radic Biol Med ; 162: 27-37, 2021 01.
Article in English | MEDLINE | ID: mdl-33278510

ABSTRACT

Etoposide is an extensively prescribed anticancer drug that, unfortunately, causes therapy-related leukemia. The mechanisms by which etoposide induces secondary hematopoietic malignancies are poorly documented. However, etoposide-related leukemogenesis is known to depend on oxidative metabolites of etoposide, notably etoposide quinone, that can react with protein cysteine residues such as in topoisomerases II. CREBBP is a major histone acetyltransferase that functions mainly as a transcriptional co-activator. This epigenetic enzyme is considered as a tumor suppressor that plays a major role in hematopoiesis. Genetic alterations affecting CREBBP activity are highly common in hematopoietic malignancies. We report here that CREBBP is impaired by etoposide quinone. Molecular and kinetic analyses show that this inhibition occurs through the rapid and covalent (kinhib = 16.102 M-1. s-1) adduction of etoposide quinone with redox sensitive cysteine residues within the RING and PHD Zn2+-fingers of CREBBP catalytic core leading to subsequent release of Zn2+. In agreement with these findings, experiments conducted in cells and in mice treated with etoposide showed irreversible inhibition of endogenous CREBBP activity and decreased H3K18 and H3K27 acetylation. As shown for topoisomerases II, our work thus suggests that the leukemogenic metabolite etoposide quinone can impair the epigenetic CREBBP acetyltransferase through reaction with redox sensitive cysteine residues.


Subject(s)
Antineoplastic Agents , Cysteine , Animals , CREB-Binding Protein/metabolism , Etoposide , Humans , Mice , Oxidation-Reduction , Oxidative Stress , Quinones , Zinc
10.
Biochem Biophys Res Commun ; 525(2): 308-312, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32089267

ABSTRACT

Transglutaminases (TG) and arylamine N-acetyltransferases (NAT) are important family of enzymes. Although they catalyze different reactions and have distinct structures, these two families of enzymes share a spatially conserved catalytic triad (Cys, His, Asp residues). In active TGs, a conserved Trp residue located close to the triad cysteine is crucial for catalysis through stabilization of transition states. Here, we show that in addition to sharing a similar catalytic triad with TGs, functional NAT enzymes also possess in their active site an aromatic residue (Phe, Tyr or Trp) occupying a structural position similar to the Trp residue of active TGs. More importantly, as observed in active TGs, our data indicates that in functional NAT enzymes this conserved aromatic residue is also involved in stabilization of transition states. These results thus indicate that in addition to the three triad residues, these two families of enzymes also share a spatially conserved aromatic amino acid position important for catalysis. Identification of residues involved in the stabilization of transition states is important to develop potent inhibitors. Interestingly, NAT enzymes have been shown as potential targets of clinical interest.


Subject(s)
Amino Acid Sequence , Arylamine N-Acetyltransferase/chemistry , Conserved Sequence , Transglutaminases/chemistry , Amino Acids, Aromatic , Animals , Biocatalysis , Catalytic Domain , Humans , Transglutaminases/genetics
11.
Adv Neurobiol ; 23: 125-145, 2019.
Article in English | MEDLINE | ID: mdl-31667807

ABSTRACT

Glycogen constitutes the main store of glucose in animal cells. Being present at much lower concentrations in the brain than in liver and muscles, brain glycogen has long been considered as an emergency source of glucose, mobilized under stress conditions (including hypoglyceamia). Nevertheless, over the past decade, multiple studies have shed a new light on the roles of brain glycogen, being notably an energy supply critical for high-cognitive processes such as learning and memory consolidation. Glycogen phosphorylase (GP) is the key enzyme regulating the mobilization of glycogen in cells. It is found in humans as three isozymes: muscle (mGP), liver (lGP) and brain GP (bGP). In the brain, astrocytes express both mGP and bGP while neurons only express the brain isoform. Although GP isozymes are very similar, their distinct regulatory features confer them distinct metabolic functions that are strongly related to the roles of glycogen in different tissues. Here, we provide an overview of the functions, the regulations and the structures of GPs in the brain and their relation to the specific roles of glycogen in astrocytes and neurons. We also discuss novel findings concerning the specific regulations of bGP by oxidative stress, and the potential of these enzymes as therapeutic targets in the brain.


Subject(s)
Brain/enzymology , Glycogen Phosphorylase/chemistry , Glycogen Phosphorylase/metabolism , Glycogen , Animals , Brain/metabolism , Glycogen/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Liver/enzymology , Liver/metabolism , Muscles/enzymology , Muscles/metabolism
12.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248982

ABSTRACT

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Subject(s)
Benzene , Benzoquinones/metabolism , Leukemia , Neoplasm Proteins , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , STAT1 Transcription Factor , Signal Transduction/drug effects , Benzene/pharmacokinetics , Benzene/pharmacology , HEK293 Cells , Humans , Jurkat Cells , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics
13.
Mol Pharmacol ; 96(2): 297-306, 2019 08.
Article in English | MEDLINE | ID: mdl-31221825

ABSTRACT

Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 µM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.


Subject(s)
Etoposide/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Quinones/pharmacology , Binding Sites , Catalytic Domain , Cysteine/metabolism , Down-Regulation , Gene Expression Regulation/drug effects , HL-60 Cells , Humans , Jurkat Cells , Phosphorylation/drug effects , Quinones/chemistry , STAT1 Transcription Factor/metabolism
14.
FEBS Lett ; 593(8): 831-841, 2019 04.
Article in English | MEDLINE | ID: mdl-30883722

ABSTRACT

Recent studies have revealed a possible link between the activities of polymorphic arylamine N-acetyltransferases (NATs) and energy metabolism. We used a Nat1/Nat2 double knockout (KO) mouse model to demonstrate that ablation of the two Nat genes is associated with modest, intermittent alterations in respiratory exchange rate. Pyruvate tolerance tests show that double KO mice have attenuated hepatic gluconeogenesis when maintained on a high-fat/high-sucrose diet. Absence of the two Nat genes also leads to an increase in the hepatic concentration of coenzyme A in mice fed a high-fat/high-sucrose diet. Our results suggest a modest involvement of NAT in energy metabolism in mice, which is consistent with the absence of major phenotypic deregulation of energy metabolism in slow human acetylators.


Subject(s)
Arylamine N-Acetyltransferase/deficiency , Arylamine N-Acetyltransferase/genetics , Energy Metabolism/genetics , Animals , Coenzyme A/metabolism , Diet, High-Fat/adverse effects , Gene Knockout Techniques , Gluconeogenesis/genetics , Humans , Liver/metabolism , Mice
15.
Endocrinology ; 158(10): 3200-3211, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28977593

ABSTRACT

Secretion of 17-ß-estradiol (E2) by human granulosa cells can be disrupted by various environmental toxicants. In the current study, we investigated whether carbon black nanoparticles (CB NPs) affect the steroidogenic activity of cultured human granulosa cells. The human granulosa cell line KGN and granulosa cells from patients undergoing in vitro fertilization were treated with increasing concentrations of CB NPs (1 to 100 µg/mL) together or not with follicle-stimulating hormone (FSH). We observed that CB NPs are internalized in KGN cells without affecting cell viability. CB NPs could be localized in the cytoplasm, within mitochondria and in association with the outer face of the endoplasmic reticulum membrane. In both cell types, CB NPs reduced in a dose-dependent manner the activity of aromatase enzyme, as reflected by a decrease in E2 secretion. A significant decrease was observed in response to CB NPs concentrations from 25 and 50 µg/mL in KGN cell line and primary cultures, respectively. Furthermore, CB NPs decreased aromatase protein levels in both cells and reduced aromatase transcript levels in KGN cells. CB NPs rapidly activated extracellular signal-regulated kinase 1 and 2 in KGN cells and pharmacological inhibition of this signaling pathway using PD 98059 significantly attenuated the inhibitory effects of CB NPs on CYP19A1 gene expression and aromatase activity. CB NPs also inhibited the stimulatory effect of FSH on aromatase expression and activity. Altogether, our study on cultured ovarian granulosa cells reveals that CB NPs decrease estrogens production and highlights possible detrimental effect of these common NPs on female reproductive health.


Subject(s)
Aromatase Inhibitors/pharmacology , Estradiol/metabolism , Granulosa Cells/enzymology , MAP Kinase Signaling System/drug effects , Nanoparticles/administration & dosage , Soot/pharmacology , Aromatase/genetics , Aromatase/metabolism , Cell Line , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Endocrine Disruptors/pharmacology , Estradiol/biosynthesis , Estrogen Antagonists , Female , Fertilization in Vitro , Follicle Stimulating Hormone/administration & dosage , Granulosa Cells/chemistry , Granulosa Cells/metabolism , Humans , MAP Kinase Signaling System/physiology , Nanoparticles/analysis , Soot/administration & dosage , Soot/analysis
16.
Mol Pharmacol ; 92(3): 358-365, 2017 09.
Article in English | MEDLINE | ID: mdl-28674152

ABSTRACT

Thiram (tetramethylthiuram disulfide) is a representative dithiocarbamate (DTC) pesticide used in both the field and as a seed protectant. The widespread use of Thiram and other DTC pesticides has raised concerns for health, because these compounds can exert neuropathic, endocrine disruptive, and carcinogenic effects. These toxic effects are thought to rely, at least in part, on the reaction of Thiram (and certain of its metabolites) with cellular protein thiols with subsequent loss of protein function. So far, a limited number of molecular targets of Thiram have been reported, including few enzymes such as dopamine ß-hydroxylase, 11ß-hydroxysteroid dehydrogenase, and brain glycogen phosphorylase. We provide evidence that Thiram is an inhibitor (KI = 23 µM; kinact = 0.085 second-1; kinact/KI = 3691 M-1⋅s-1) of human arylamine N-acetyltransferase 1 (NAT1), a phase II xenobiotic-metabolizing enzyme that plays a key role in the biotransformation of aromatic amine xenobiotics. Thiram was found to act as an irreversible inhibitor through the modification of NAT1 catalytic cysteine residue as also reported for other enzymes targeted by this pesticide. We also showed using purified NAT1 and human keratinocytes that Thiram impaired the N-acetylation of 3,4-dichloroaniline (3,4-DCA), a major toxic metabolite of aromatic amine pesticides (such as Diuron or Propanil). As coexposure to different classes of pesticides is common, our data suggest that pharmacokinetic drug-drug interactions between DTC pesticides such as Thiram and aromatic amine pesticides may occur through alteration of NAT1 enzymes functions.


Subject(s)
Arylamine N-Acetyltransferase/antagonists & inhibitors , Fungicides, Industrial/pharmacology , Isoenzymes/antagonists & inhibitors , Thiram/pharmacology , Acetylation , Aniline Compounds/metabolism , Cells, Cultured , Dithiothreitol/pharmacology , Humans
17.
J Biol Chem ; 292(5): 1603-1612, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27965358

ABSTRACT

Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 105 m-1 s-1). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys318-Cys326), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.


Subject(s)
Glycogen Phosphorylase, Brain Form/chemistry , Neurotoxins/chemistry , Thiocarbamates/chemistry , Glycogen/metabolism , Glycogen Phosphorylase, Brain Form/genetics , Glycogen Phosphorylase, Brain Form/metabolism , Humans , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Neurotoxins/toxicity , Thiocarbamates/toxicity
18.
FEBS J ; 284(4): 546-554, 2017 02.
Article in English | MEDLINE | ID: mdl-27782369

ABSTRACT

Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest.


Subject(s)
Adenosine Monophosphate/chemistry , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/chemistry , Glycogen/chemistry , Adenosine Monophosphate/metabolism , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Binding Sites , Brain/enzymology , Enzyme Inhibitors/therapeutic use , Gene Expression , Glycogen/metabolism , Glycogen Phosphorylase/genetics , Glycogen Phosphorylase/metabolism , Glycogen Storage Disease/drug therapy , Glycogen Storage Disease/enzymology , Glycogen Storage Disease/genetics , Glycogen Storage Disease/pathology , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Liver/enzymology , Models, Molecular , Muscles/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Structural Homology, Protein , Substrate Specificity
19.
Br J Pharmacol ; 174(14): 2174-2182, 2017 07.
Article in English | MEDLINE | ID: mdl-27846346

ABSTRACT

BACKGROUND AND PURPOSE: The arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play an important role in the detoxification and/or bioactivation of arylamine drugs and xenobiotics. In bacteria, NATs may contribute to the resistance against antibiotics such as isoniazid or sulfamides through their acetylation, which makes this enzyme family a possible drug target. Bacillus anthracis, a bacterial species of clinical significance, expresses three NAT isozymes with distinct structural and enzymatic properties, including an inactive isozyme ((BACAN)NAT3). (BACAN)NAT3 features both a non-canonical Glu residue in its catalytic triad and a truncated C-terminus domain. However, the role these unusual characteristics play in the lack of activity of the (BACAN)NAT3 isozyme remains unclear. EXPERIMENTAL APPROACH: Protein engineering, recombinant expression, enzymatic analyses with aromatic amine substrates and phylogenetic analysis approaches were conducted. KEY RESULTS: The deletion of guanine 580 (G580) in the nat3 gene was shown to be responsible for the expression of a truncated (BACAN)NAT3 isozyme. Artificial re-introduction of G580 in the nat3 gene led to a functional enzyme able to acetylate several arylamine drugs displaying structural characteristics comparable with its functional Bacillus cereus homologue ((BACCR)NAT3). Phylogenetic analysis of the nat3 gene in the B. cereus group further indicated that nat3 may constitute a pseudogene of the B. anthracis species. CONCLUSION AND IMPLICATIONS: The existence of NATs with distinct properties and evolution in Bacillus species may account for their adaptation to their diverse chemical environments. A better understanding of these isozymes is of importance for their possible use as drug targets. LINKED ARTICLES: This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.


Subject(s)
Arylamine N-Acetyltransferase/chemistry , Arylamine N-Acetyltransferase/metabolism , Bacillus anthracis/enzymology , Amines/chemistry , Amines/metabolism , Arylamine N-Acetyltransferase/genetics , Circular Dichroism , Cloning, Molecular , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Phylogeny , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
J Biol Chem ; 291(46): 23842-23853, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27660393

ABSTRACT

Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.


Subject(s)
Disulfides/chemistry , Glycogen Phosphorylase, Brain Form/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Allosteric Regulation/physiology , Animals , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Disulfides/metabolism , Glycogen/chemistry , Glycogen/metabolism , Glycogen Phosphorylase, Brain Form/genetics , Glycogen Phosphorylase, Brain Form/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Oxidation-Reduction , Phosphorylation/physiology , Rabbits , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...