Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10905, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740939

ABSTRACT

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Subject(s)
Epithelial Cells , NF-E2-Related Factor 2 , Oxidative Stress , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Aldehydes/metabolism , Glutathione/metabolism , Cell Survival/drug effects , Cell Line , CRISPR-Cas Systems , Lipid Peroxidation/drug effects
2.
PLoS One ; 19(4): e0302932, 2024.
Article in English | MEDLINE | ID: mdl-38669265

ABSTRACT

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Subject(s)
Aldehydes , Bone Morphogenetic Protein 4 , Coculture Techniques , Colon , Epithelial-Mesenchymal Transition , Fibroblasts , Animals , Colon/cytology , Colon/drug effects , Colon/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/drug effects , Bone Morphogenetic Protein 4/metabolism , Aldehydes/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Phenotype , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology
3.
NPJ Sci Food ; 7(1): 53, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805637

ABSTRACT

Epidemiological and experimental evidence indicated that processed meat consumption is associated with colorectal cancer risks. Several studies suggest the involvement of nitrite or nitrate additives via N-nitroso-compound formation (NOCs). Compared to the reference level (120 mg/kg of ham), sodium nitrite removal and reduction (90 mg/kg) similarly decreased preneoplastic lesions in F344 rats, but only reduction had an inhibitory effect on Listeria monocytogenes growth comparable to that obtained using the reference nitrite level and an effective lipid peroxidation control. Among the three nitrite salt alternatives tested, none of them led to a significant gain when compared to the reference level: vegetable stock, due to nitrate presence, was very similar to this reference nitrite level, yeast extract induced a strong luminal peroxidation and no decrease in preneoplastic lesions in rats despite the absence of NOCs, and polyphenol rich extract induced the clearest downward trend on preneoplastic lesions in rats but the concomitant presence of nitrosyl iron in feces. Except the vegetable stock, other alternatives were less efficient than sodium nitrite in reducing L. monocytogenes growth.

4.
Nanotoxicology ; 17(4): 289-309, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37194738

ABSTRACT

The whitening and opacifying agent titanium dioxide (TiO2) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO2 particles has not been documented. Here we analyzed E171 particle translocation in vivo through the pig buccal mucosa and in vitro on human buccal TR146 cells, and the effects on proliferating and differentiated TR146 cells. In the buccal floor of pigs, isolated TiO2 particles and small aggregates were observed 30 min after sublingual deposition, and were recovered in the submandibular lymph nodes at 4 h. In TR146 cells, kinetic analyses showed high absorption capacities of TiO2 particles. The cytotoxicity, genotoxicity and oxidative stress were investigated in TR146 cells exposed to E171 in comparison with two TiO2 size standards of 115 and 21 nm in diameter. All TiO2 samples were reported cytotoxic in proliferating cells but not following differentiation. Genotoxicity and slight oxidative stress were reported for the E171 and 115 nm TiO2 particles. These data highlight the buccal mucosa as an absorption route for the systemic passage of food-grade TiO2 particles. The greater toxicity on proliferating cells suggest potential impairement of oral epithelium renewal. In conclusion, this study emphasizes that buccal exposure should be considered during toxicokinetic studies and for risk assessment of TiO2 in human when used as food additive, including in toothpastes and pharmaceutical formulations.


Subject(s)
Mouth Mucosa , Nanoparticles , Humans , Animals , Swine , Toothpastes , Particle Size , Titanium/toxicity , Food Additives/toxicity , Pharmaceutical Preparations , Epithelium , Nanoparticles/toxicity
5.
PLoS One ; 17(8): e0273858, 2022.
Article in English | MEDLINE | ID: mdl-36040985

ABSTRACT

Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.


Subject(s)
Colon , Fibroblasts , Animals , Cell Line , Cells, Cultured , Coculture Techniques , Fibroblasts/metabolism , Mice
6.
Cell Mol Life Sci ; 79(6): 284, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35526196

ABSTRACT

BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.


Subject(s)
Colorectal Neoplasms , Curcumin , Microsatellite Instability , Sodium-Calcium Exchanger , Animals , Calcium/metabolism , Calcium Signaling , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Curcumin/pharmacology , Humans , Mice , Microsatellite Repeats , Mitochondrial Proteins/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors
7.
Cell Microbiol ; 21(12): e13099, 2019 12.
Article in English | MEDLINE | ID: mdl-31414579

ABSTRACT

Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colon/metabolism , Epithelial Cells/metabolism , Genomic Instability/genetics , Phosphatidylinositol 3-Kinases/metabolism , Salmonella Infections/metabolism , Salmonella enterica/metabolism , Adenomatous Polyposis Coli/microbiology , Adenomatous Polyposis Coli/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Cycle Checkpoints/genetics , Cell Line , Colon/microbiology , Colon/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , DNA Damage/genetics , Epithelial Cells/microbiology , Epithelial Cells/pathology , Genes, Tumor Suppressor/physiology , Humans , Mice , Mutagens/metabolism , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella Infections/pathology , Signal Transduction/genetics , Tumor Microenvironment/genetics
8.
Microbiome ; 7(1): 72, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31060614

ABSTRACT

BACKGROUND: The World Health Organization classified processed and red meat consumption as "carcinogenic" and "probably carcinogenic", respectively, to humans. Haem iron from meat plays a role in the promotion of colorectal cancer in rodent models, in association with enhanced luminal lipoperoxidation and subsequent formation of aldehydes. Here, we investigated the short-term effects of this haem-induced lipoperoxidation on mucosal and luminal gut homeostasis including microbiome in F344 male rats fed with a haem-enriched diet (1.5 µmol/g) 14-21 days. RESULTS: Changes in permeability, inflammation, and genotoxicity observed in the mucosal colonic barrier correlated with luminal haem and lipoperoxidation markers. Trapping of luminal haem-induced aldehydes normalised cellular genotoxicity, permeability, and ROS formation on a colon epithelial cell line. Addition of calcium carbonate (2%) to the haem-enriched diet allowed the luminal haem to be trapped in vivo and counteracted these haem-induced physiological traits. Similar covariations of faecal metabolites and bacterial taxa according to haem-induced lipoperoxidation were identified. CONCLUSIONS: This integrated approach provides an overview of haem-induced modulations of the main actors in the colonic barrier. All alterations were closely linked to haem-induced lipoperoxidation, which is associated with red meat-induced colorectal cancer risk.


Subject(s)
Aldehydes/metabolism , Colon/metabolism , Heme/administration & dosage , Intestinal Mucosa/metabolism , Iron/metabolism , Microbiota , Animals , Heme/metabolism , Homeostasis , Inflammation , Lipid Peroxides/metabolism , Male , Mutagenicity Tests , Rats , Rats, Inbred F344
9.
Cancer Prev Res (Phila) ; 11(9): 569-580, 2018 09.
Article in English | MEDLINE | ID: mdl-29954759

ABSTRACT

Red meat is probably carcinogenic to humans (WHO/IARC class 2A), in part through heme iron-induced lipoperoxidation. Here, we investigated whether red meat promotes carcinogenesis in rodents and modulates associated biomarkers in volunteers, speculating that an antioxidant marinade could suppress these effects via limitation of the heme induced lipid peroxidation. We gave marinated or non-marinated beef with various degrees of cooking to azoxymethane-initiated rats, Min mice, and human volunteers (crossover study). Mucin-depleted foci were scored in rats, adenoma in Min mice. Biomarkers of lipoperoxidation were measured in the feces and urine of rats, mice, and volunteers. The organoleptic properties of marinated meat were tested. Fresh beef increased colon carcinogenesis and lipoperoxidation in rats and mice and lipoperoxidation in humans. Without an adverse organoleptic effect on meat, marinade normalized peroxidation biomarkers in rat and mouse feces, reduced peroxidation in human feces and reduced the number of Mucin-depleted foci in rats and adenoma in female Min mice. This could lead to protective strategies to decrease the colorectal cancer burden associated with red meat consumption. Cancer Prev Res; 11(9); 569-80. ©2018 AACR.


Subject(s)
Carcinogenesis/pathology , Colonic Neoplasms/prevention & control , Cooking , Lipid Peroxidation/physiology , Red Meat/adverse effects , Adult , Animals , Azoxymethane/administration & dosage , Azoxymethane/toxicity , Biomarkers/analysis , Carcinogens/administration & dosage , Colonic Neoplasms/etiology , Cross-Over Studies , Feces/chemistry , Female , Healthy Volunteers , Heme/metabolism , Humans , Male , Mice , Middle Aged , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/prevention & control , Rats , Rats, Inbred F344
10.
Sci Rep ; 7: 40373, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106049

ABSTRACT

Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.


Subject(s)
Colon/immunology , Colon/pathology , Food , Homeostasis , Immune System/immunology , Precancerous Conditions/pathology , Titanium/chemistry , Administration, Oral , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Count , Cell Separation , Cytokines/metabolism , DNA Damage , Dendritic Cells/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammation/pathology , Liver/metabolism , Liver/pathology , Male , Permeability , Peyer's Patches/pathology , Rats, Wistar , Subcellular Fractions/metabolism , T-Lymphocytes/immunology , Tissue Distribution , Titanium/administration & dosage
11.
Article in English | MEDLINE | ID: mdl-27047802

ABSTRACT

The composition of the human microbiota influences tumorigenesis, notably in colorectal cancer (CRC). Pathogenic Escherichia coli possesses a variety of virulent factors, among them the Cytolethal Distending Toxin (CDT). CDT displays dual DNase and phosphatase activities and induces DNA double strand breaks, cell cycle arrest and apoptosis in a broad range of mammalian cells. As CDT could promote malignant transformation, we investigated the cellular outcomes induced by acute and chronic exposures to E. coli CDT in normal human colon epithelial cells (HCECs). Moreover, we conducted a comparative study between isogenic derivatives cell lines of the normal HCECs in order to mimic the mutation of three major genes found in CRC genetic models: APC, KRAS, and TP53. Our results demonstrate that APC and p53 deficient cells showed impaired DNA damage response after CDT exposure, whereas HCECs expressing oncogenic KRAS (V12) were more resistant to CDT. Compared to normal HCECs, the precancerous derivatives exhibit hallmarks of malignant transformation after a chronic exposure to CDT. HCECs defective in APC and p53 showed enhanced anchorage independent growth and genetic instability, assessed by the micronucleus formation assay. In contrast, the ability to grow independently of anchorage was not impacted by CDT chronic exposure in KRAS(V12) HCECs, but micronucleus formation is dramatically increased. Thus, CDT does not initiate CRC by itself, but may have promoting effects in premalignant HCECs, involving different mechanisms in function of the genetic alterations associated to CRC.


Subject(s)
Bacterial Toxins/pharmacology , Carcinogenesis/drug effects , Carcinogens/pharmacology , Colorectal Neoplasms/pathology , DNA Breaks, Double-Stranded/drug effects , Adenomatous Polyposis Coli Protein/genetics , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Colorectal Neoplasms/genetics , DNA Repair/drug effects , Epithelial Cells/pathology , Escherichia coli/pathogenicity , Humans , Intestinal Mucosa/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics
12.
Am J Clin Nutr ; 98(5): 1255-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24025632

ABSTRACT

BACKGROUND: Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats. OBJECTIVES: We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat-induced preneoplastic lesions in rats and associated biomarkers in rats and humans. DESIGN: Six additives (calcium carbonate, inulin, rutin, carnosol, α-tocopherol, and trisodium pyrophosphate) were added to cured meat given to groups of rats for 14 d, and fecal biomarkers were measured. On the basis of these results, calcium and tocopherol were kept for the following additional experiments: cured meat, with or without calcium or tocopherol, was given to dimethylhydrazine-initiated rats (47% meat diet for 100 d) and to human volunteers in a crossover study (180 g/d for 4 d). Rat colons were scored for mucin-depleted foci, putative precancer lesions. Biomarkers of nitrosation, lipoperoxidation, and cytotoxicity were measured in the urine and feces of rats and volunteers. RESULTS: Cured meat increased nitroso compounds and lipoperoxidation in human stools (both P < 0.05). Calcium normalized both biomarkers in rats and human feces, whereas tocopherol only decreased nitro compounds in rats and lipoperoxidation in feces of volunteers (all P < 0.05). Last, calcium and tocopherol reduced the number of mucin-depleted foci per colon in rats compared with nonsupplemented cured meat (P = 0.01). CONCLUSION: Data suggest that the addition of calcium carbonate to the diet or α-tocopherol to cured meat may reduce colorectal cancer risk associated with cured-meat intake. This trial was registered at clinicaltrials.gov as NCT00994526.


Subject(s)
Calcium, Dietary/administration & dosage , Carcinogenesis/pathology , Colon/drug effects , Meat Products/adverse effects , alpha-Tocopherol/administration & dosage , Abietanes/administration & dosage , Acetylcysteine/urine , Adult , Aged , Animals , Biomarkers/blood , Blood Glucose/analysis , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Carcinogenesis/chemically induced , Carcinogens/toxicity , Cholesterol/blood , Colon/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/prevention & control , Creatinine/blood , Cross-Over Studies , Dimethylhydrazines/administration & dosage , Dimethylhydrazines/adverse effects , Diphosphates/administration & dosage , Feces/chemistry , Female , Healthy Volunteers , Humans , Inulin/administration & dosage , Middle Aged , Rats , Rats, Inbred F344 , Rutin/administration & dosage , Single-Blind Method , Thiobarbituric Acid Reactive Substances/analysis , Thiobarbituric Acid Reactive Substances/metabolism
13.
Chem Res Toxicol ; 24(11): 1984-93, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21967605

ABSTRACT

Animal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene. The latter thus have a selective advantage, possibly leading to cancer promotion. This mutation is an early and frequent event in human colorectal cancer. To explain this difference, the HNE biotransformation capacities of the two cell types have been studied using radiolabeled and stable isotope-labeled HNE. Apc-mutated cells showed better biotransformation capacities than nonmutated cells did. Thiol compound conjugation capacities were higher for mutated cells, with an important advantage for the extracellular conjugation to cysteine. Both cells types were able to reduce HNE to 4-hydroxynonanal, a biotransformation pathway that has not been reported for other intestinal cells. Mutated cells showed higher capacities to oxidize 4-hydroxynonanal into 4-hydroxynonanoic acid. The mRNA expression of different enzymes involved in HNE metabolism such as aldehyde dehydrogenase 1A1, 2 and 3A1, glutathione transferase A4-4, or cystine transporter xCT was upregulated in mutated cells compared with wild-type cells. In conclusion, this study suggests that Apc-mutated cells are more efficient than wild-type cells in metabolizing HNE into thiol conjugates and 4-hydroxynonanoic acid due to the higher expression of key biotransformation enzymes. These differential biotransformation capacities would explain the differences of susceptibility between normal and Apc-mutated cells regarding secondary lipid oxidation products.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Colon/metabolism , Colorectal Neoplasms/metabolism , Epithelial Cells/metabolism , Heme/toxicity , Iron/toxicity , Adenomatous Polyposis Coli Protein/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehydes/metabolism , Aldehydes/toxicity , Animals , Biotransformation , Chromatography, High Pressure Liquid , Colon/drug effects , Colon/pathology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , DNA Damage , Epithelial Cells/cytology , Epithelial Cells/drug effects , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Heme/adverse effects , Heme/metabolism , Humans , Iron/adverse effects , Iron/metabolism , Isotope Labeling , Mass Spectrometry , Mice , Mutation , Oxidation-Reduction , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Tumor Cells, Cultured
14.
Chem Biol Interact ; 186(3): 280-6, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20513441

ABSTRACT

Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (E(max)) was obtained with 10 microM for IVM, 80 microM for CLOS, 40 microM for TCZ and TCZ-SO, and 80 microM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line. Such in vitro approach constitutes a powerful tool to predict Pgp-drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anthelmintics/pharmacology , Rhodamine 123/analysis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , LLC-PK1 Cells , Rhodamine 123/metabolism , Swine , Up-Regulation
15.
Drug Metab Dispos ; 38(4): 573-80, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20089736

ABSTRACT

Macrocyclic lactones (MLs) are lipophilic anthelmintics and substrates for P-glycoprotein (P-gp), an ATP-binding cassette transporter involved in drug efflux out of both host and parasites. To evaluate the contribution of P-gp to the in vivo kinetic disposition of MLs, the plasma kinetics, brain concentration, and intestinal excretion of three structurally different MLs (ivermectin, eprinomectin, and moxidectin) were compared in wild-type and P-gp-deficient [mdr1ab(-/-)] mice. Each drug (0.2 mg/kg) was administered orally, intravenously, or subcutaneously to the mice. Plasma, brain, and intestinal tissue concentrations were measured by high-performance liquid chromatography. The intestinal excretion rate after intravenous administration was determined at different levels of the small intestine by using an in situ intestinal perfusion model. P-gp deficiency led to a significant increase in the area under the plasma concentration-time curve (AUC) of ivermectin (1.5-fold) and eprinomectin (3.3-fold), whereas the moxidectin AUC was unchanged. Ivermectin and to a greater extent eprinomectin were both excreted by the intestine via a P-gp-dependent pathway, whereas moxidectin excretion was weaker and mostly P-gp-independent. The three drugs accumulated in the brains of the mdr1ab(-/-) mice, but eprinomectin concentrations were significantly lower. We concluded that eprinomectin disposition in mice is controlled mainly by P-gp efflux, more so than that of ivermectin, whereas moxidectin disposition appears to be mostly P-gp-independent. Given that eprinomectin and ivermectin have higher affinity for P-gp than moxidectin, these findings demonstrated that the relative affinity of MLs for P-gp could be predictive of the in vivo kinetic behavior of these drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Anthelmintics/pharmacokinetics , Ivermectin/analogs & derivatives , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Animals , Area Under Curve , Brain/metabolism , Feces/chemistry , Injections, Intravenous , Intestinal Mucosa/metabolism , Ivermectin/pharmacokinetics , Macrolides/pharmacokinetics , Male , Mice , Mice, Knockout , Perfusion , Tissue Distribution
16.
Vet Parasitol ; 157(3-4): 284-90, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18774650

ABSTRACT

The pharmacokinetics and mammary excretion of moxidectin and eprinomectin were determined in water buffaloes (Bubalus bubalis) following topical administration of 0.5mgkg(-1). Following administration of moxidectin, plasma and milk concentrations of moxidectin increased to reach maximal concentrations (C(max)) of 5.46+/-3.50 and 23.76+/-16.63ngml(-1) at T(max) of 1.20+/-0.33 and 1.87+/-0.77 days in plasma and milk, respectively. The mean residence time (MRT) were similar for plasma and milk (5.27+/-0.45 and 5.87+/-0.80 days, respectively). The AUC value was 5-fold higher in milk (109.68+/-65.01ngdayml(-1)) than in plasma (23.66+/-12.26ngdayml(-1)). The ratio of AUC milk/plasma for moxidectin was 5.04+/-2.13. The moxidectin systemic availability (expressed as plasma AUC values) obtained in buffaloes was in the same range than those reported in cattle. The faster absorption and elimination processes of moxidectin were probably due to a lower storage in fat associated with the fact that animals were in lactation. Nevertheless, due to its high excretion in milk and its high detected maximum concentration in milk which is equivalent or higher to the Maximal Residue Level value (MRL) (40ngml(-1)), its use should be prohibited in lactating buffaloes. Concerning eprinomectin, the C(max) were of 2.74+/-0.89 and 3.40+/-1.68ngml(-1) at T(max) of 1.44+/-0.20 and 1.33+/-0.0.41 days in plasma and milk, respectively. The MRT and the AUC were similar for plasma (3.17+/-0.41 days and 11.43+/-4.01ngdayml(-1)) and milk (2.70+/-0.44 days and 8.49+/-3.33ngdayml(-1)). The ratio of AUC milk/plasma for eprinomectin was 0.76+/-0.16. The AUC value is 20 times lower than that reported in dairy cattle. The very low extent of mammary excretion and the milk levels reported lower than the MRL (20ngml(-1)) supports the permitted use of eprinomectin in lactating water buffaloes.


Subject(s)
Anthelmintics/pharmacokinetics , Buffaloes/metabolism , Ivermectin/analogs & derivatives , Milk/chemistry , Administration, Topical , Animals , Anthelmintics/analysis , Anthelmintics/blood , Area Under Curve , Female , Half-Life , Ivermectin/administration & dosage , Ivermectin/analysis , Ivermectin/blood , Ivermectin/pharmacokinetics , Lactation , Macrolides/administration & dosage , Macrolides/analysis , Macrolides/blood , Macrolides/pharmacokinetics
17.
Vet Parasitol ; 157(1-2): 117-22, 2008 Oct 20.
Article in English | MEDLINE | ID: mdl-18657366

ABSTRACT

The parasiticide ivermectin and the antifungal drug ketoconazole are drugs that interact with P-glycoprotein. We have tested the ability of ketoconazole at a clinical dose to modify the pharmacokinetics of ivermectin in sheep. Lacaune lambs were administered with a single oral dose of ivermectin alone at 0.2 mg/kg (n=5) or in combination with a daily oral dose of ketoconazole (10 mg/kg) given for 3 days before and 2 days after the ivermectin (n=5). The plasma kinetics of ivermectin and its metabolite were followed over 15 days by HPLC analysis. Co-administration of ketoconazole induced higher plasma concentrations of ivermectin, leading to a substantial increase in the overall exposure of the animals to the drug. Ketoconazole did not reduce the production of the main ivermectin metabolite but it may rather act by inhibiting P-glycoprotein, and thus increasing the absorption of ivermectin. The use of a P-gp reversing agent such as ketoconazole could be useful tool to optimize antiparasitic therapy in the face of the worldwide development of anthelmintic resistance.


Subject(s)
Anthelmintics/pharmacokinetics , Antifungal Agents/pharmacokinetics , Ivermectin/pharmacokinetics , Ketoconazole/pharmacokinetics , Sheep/blood , Animals , Anthelmintics/blood , Drug Administration Schedule , Drug Interactions , Female , Ivermectin/blood , Ketoconazole/administration & dosage
18.
Eur J Pharm Sci ; 30(1): 84-94, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17134887

ABSTRACT

P-glycoprotein (P-gp) is involved in the ATP-dependant cellular efflux of a large number of drugs including ivermectin, a macrocyclic lactone (ML) endectocide, widely used in livestock and human antiparasitic therapy. The interactions of P-gp with ivermectin and other MLs were studied. In a first approach, the ability of ivermectin (IVM), eprinomectin (EPR), abamectin (ABA), doramectin (DOR), selamectin (SEL), or moxidectin (MOX) to inhibit the rhodamine123 efflux was measured in recombinant cells overexpressing P-gp. Then, the influence of these compounds on the P-gp ATPase activity was tested on membrane vesicles prepared from fibroblasts overexpressing P-gp. All the MLs tested increased the intracellular rhodamine123. However, the potency of MOX to inhibit P-gp function was 10 times lower than the other MLs. They all inhibited the basal and decreased the verapamil-stimulated P-gp ATPase activity. But SEL and MOX were less potent than the other MLs when competing with verapamil. According to the structural specificity of SEL and MOX, we conclude that the integrity of the sugar moiety is determinant to achieve the optimal interaction of macrocyclic lactones with P-gp. The structure-affinity relationship for interaction with P-gp is important information for improving ML bioavailability and reversal of multidrug resistance (MDR).


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Epithelial Cells , Lactones/pharmacokinetics , Macrocyclic Compounds/pharmacokinetics , Animals , Biological Availability , Biological Transport , Cell Line , Cloning, Molecular , Drug Interactions , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lactones/chemistry , Macrocyclic Compounds/chemistry , Mice , Molecular Structure , Structure-Activity Relationship , Swine
19.
Chem Biol Interact ; 159(3): 169-79, 2006 Feb 25.
Article in English | MEDLINE | ID: mdl-16384552

ABSTRACT

Ivermectin is a potent antiparasitic drug from macrocyclic lactone (ML) family, which interacts with the ABC multidrug transporter P-glycoprotein (Pgp). We studied the interactions of ivermectin with the multidrug resistance proteins (MRPs) by combining cellular and subcellular approaches. The inhibition by ivermectin of substrate transport was measured in A549 cells (calcein or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, BCECF) and in HL60-MRP1 (calcein). Ivermectin induced calcein and BCECF retention in A549 cells (IC(50) at 1 and 2.5microM, respectively) and inhibited calcein efflux in HL60-MRP1 (IC(50)=3.8microM). The action of ivermectin on the transporters ATPase activity was followed on membranes from Sf9 cells overexpressing human Pgp, MRP1, 2 or 3. Ivermectin inhibited the Pgp, MRP1, 2 and 3 ATPase activities after stimulation by their respective activators. Ivermectin showed a rather good affinity for MRPs, mainly MRP1, in the micromolar range, although it was lower than that for Pgp. The transport of BODIPY-ivermectin was followed in cells overexpressing selectively Pgp or MRP1. In both cell lines, inhibition of the transporter activity induced intracellular retention of BODIPY-ivermectin. Our data revealed the specific interaction of ivermectin with MRP proteins, and its transport by MRP1. Although Pgp has been considered until now as the sole active transporter for this drug, the MRPs should be taken into account for the transport of ivermectin across cell membrane, modulating its disposition in addition to Pgp. This could be of importance for optimizing clinical efficacy of ML-based antiparasitic treatments. This offers fair perspectives for the use of ivermectin or non-toxic derivatives as multidrug resistance-reversing agents.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Ivermectin/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Cell Line , Cell Membrane/metabolism , Gene Expression Regulation , Humans , Ivermectin/chemistry , Molecular Structure , Spodoptera , Substrate Specificity , Swine
20.
Vet Res ; 36(2): 179-90, 2005.
Article in English | MEDLINE | ID: mdl-15720971

ABSTRACT

The cytochrome P450 (P450) superfamily represents a group of relevant enzymes in the field of drug metabolism and several exogenous or constitutional factors contribute to regulate its expression. Cattle represent an important source of animal-derived food-products and studies concerning the P450 expression are needed for the extrapolation of pharmacotoxicological data from one species to another and for the evaluation of the consumer's risk associated with the consumption of harmful residues found in foodstuffs. In the present study, possible breed-, gender- and species-differences in P4503A (the P450 subfamily more expressed in the human liver) expression were studied in vitro in Piedmontese (PDM) and Limousin (LIM) meat cattle breeds of both sexes and in domestic Ruminants (cattle, sheep and goats). Cytochrome P450 and P4503A contents as well as CYP3A-dependent drug metabolising enzymes (DME) were measured in liver microsomes. Significant lower levels of P450 (P < 0.001) and P4503A (P < 0.05) contents were observed in PDM vs. LIM of both sexes; the P4503A-dependent DME activities were significantly (P values ranging from 0.05 up to 0.001) higher in PDM cattle, particularly in males. A gender-effect in DME activities was noticed (P < 0.05) only in PDM male cattle. With regards to the species, the expression of both P4503A apoprotein and some of the related DME activities were more pronounced in sheep (P < 0.01 vs. cattle) and in goats (P < 0.05 vs. sheep; P < 0.01 vs. cattle) than in cattle. The significant differences in P4503A expression observed in LIM and PDM cattle are consistent with previously published data on strain- and breed-differences pointed out in rats and men. As far as a possible sex-effect is concerned, no clear-cut evidence is likely to be drawn. Finally, P4503A expression was more relevant in small ruminants.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cattle/genetics , Liver/enzymology , Oxidoreductases, N-Demethylating/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Cattle/metabolism , Cytochrome P-450 CYP3A , Female , Gene Expression , Goats , Male , Oxidoreductases, N-Demethylating/genetics , Sex Factors , Sheep , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...