Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 112(12): 3131-3140, 2023 12.
Article in English | MEDLINE | ID: mdl-37473918

ABSTRACT

The use of physiologically based biopharmaceutics modeling (PBBM) and bioequivalence safe space is increasingly common for immediate-release drug products. However, for extended-release (ER) formulations there are only a few examples of this application. In this study, we developed ER formulations containing cyclobenzaprine 15 mg, supported by PBBM and bioequivalence safe space. Four formulations were prepared, F1, F2, F3 (ER mini-tablet formulations) and F4 (ER tablet formulation), and the dissolution profiles were evaluated. The dissolution profile of the reference drug product was also evaluated and used to set a bioequivalence safe space. A PBBM was set up, evaluated, and used to predict the in vivo behavior of the formulations. The bioequivalence safe space was calculated to be between - 25% and + 75% of the k1 and Tlag values of the dissolution profile of the reference drug product when applying the first-order dissolution kinetic model. All time points of the dissolution profile of the ER mini-tablet formulation F2, were within the safe space, and was approved in 10 of 10 trials of crossover virtual bioequivalence studies. Based on the PBBM strategy and bioequivalence safe space, it was possible to develop an ER mini-tablet formulation virtually bioequivalent to the reference drug product, even though this formulation failed the f2 test.


Subject(s)
Biopharmaceutics , Models, Biological , Therapeutic Equivalency , Solubility , Delayed-Action Preparations , Tablets
2.
Pharmaceutics ; 15(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376183

ABSTRACT

Hydrochlorothiazide (HTZ) and Valsartan (VAL) are poorly soluble drugs in BCS classes IV and II. This study aimed to develop a method to assess the dissolution profile of tablets containing HTZ (12.5 mg) and VAL (160 mg) as a fixed-dose combination, using in silico tools to evaluate products marketed in Brazil and Peru. Firstly, in vitro dissolution tests were performed using a fractional factorial design 33-1. Then, DDDPlus™ was used to carry out experimental design assays of a complete factorial design 33. Data from the first stage were used to obtain calibration constants for in silico simulations. The factors used in both designs were formulation, sinker use, and rotation speed. Finally, effects and factor interaction assessment was evaluated based on a statistical analysis of the dissolution efficiency (DE) obtained from simulations. Thus, the established final conditions of the dissolution method were 900 mL of phosphate buffer pH 6.8, 75 rpm of rotation speed, and sinker use to prevent formulation floating. The reference product stood out because of its higher DE than other formulations. It was concluded that the proposed method, in addition to ensuring total HTZ and VAL release from formulations, has adequate discriminative power.

3.
Pharmaceutics ; 15(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242786

ABSTRACT

This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence studies. For this purpose, a PBBM was developed in GastroPlus® and combined with a Taguchi L9 design, to evaluate the impact of different drug products (Reference, Generic #1 and Generic #2) and dissolution test conditions on desvenlafaxine release. The influence of the superficial area/volume ratio (SA/V) of the tablets was observed, mainly for Generic #1, which presented higher SA/V than the others, and a high amount of drug dissolved under similar test conditions. The dissolution test conditions of 900 mL of 0.9% NaCl and paddle at 50 rpm with sinker showed to be biopredictive, as it was possible to demonstrate virtual bioequivalence for all products, despite their release-pattern differences, including Generic #3 as an external validation. This approach led to a rational development of a biopredictive dissolution method for desvenlafaxine ER tablets, providing knowledge that may help the process of drug product and dissolution method development.

4.
Braz. J. Pharm. Sci. (Online) ; 59: e21114, 2023. tab, graf
Article in English | LILACS | ID: biblio-1429958

ABSTRACT

Abstract In this study, orodispersible films formed from hydroxypropyl methylcellulose (HPMC) E6 (2, 2.5, and 3%) and plasticizers ((glycerin (Gly), propylene glycol (PP), or polyethylene glycol (PEG)), containing doxazosin mesylate, were prepared by the solvent casting method and characterized. Design of experiments (DoE) was used as a statistical tool to facilitate the interpretation of the experimental data and allow the identification of optimal levels of factors for maximum formulation performance. Differential scanning calorimetry (DSC) curves and X-ray powder diffraction (XRPD) diffractograms showed doxazosin mesylate amorphization, probably due to complexation with the polymer (HPMC E6), and the glass transition temperature of the polymer was reduced by adding a plasticizer. Fourier transformed infrared (FTIR) spectroscopy results showed that the chemical structure of doxazosin mesylate was preserved when introduced into the polymer matrix, and the plasticizers, glycerin and PEG, affected the polymer matrix with high intensity. The addition of plasticizers increased the elongation at break and adhesiveness (Gly > PEG > PP), confirming the greater plasticizer effect of Gly observed in DSC and FTIR studies. Greater transparency was observed for the orodispersible films prepared using PP. The addition of citric acid as a pH modifier was fundamental for the release of doxazosin mesylate, and the desirability formulation had a release profile similar to that of the reference product


Subject(s)
Mechanical Tests/instrumentation , Motion Pictures/classification , Plasticizers/classification , Spectrum Analysis/methods , Calorimetry, Differential Scanning/instrumentation , Adhesiveness , Doxazosin/adverse effects , Spectroscopy, Fourier Transform Infrared/methods , Hypromellose Derivatives/adverse effects
5.
Pharmaceutics ; 14(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35631478

ABSTRACT

The development of extended-release dosage forms with adequate drug release is a challenge for pharmaceutical companies, mainly when the drug presents high solubility, as in Biopharmaceutics Classification System (BCS) class I. This study aimed to develop extended-release mini-tablets containing metoprolol succinate (MS), while integrating design of experiments (DOE) and physiologically based biopharmaceutics modeling (PBBM), to predict its absorption and to run virtual bioequivalence (VBE) studies in both fasted and fed states. Core mini-tablet formulations (F1, F2, and F3) were prepared by direct compression and coated using nine coating formulations planned using DOE, while varying the percentages of the controlled-release and the pore-forming polymers. The coated mini-tablets were submitted to a dissolution test; additional formulations were prepared that were optimized by simulating the dissolution profiles, and the best one was submitted to VBE studies using GastroPlus® software. An optimized formulation (FO) containing a mixture of immediate and extended-release mini-tablets showed to be bioequivalent to the reference drug product containing MS when running VBE studies in both fasted and fed states. The integration of DOE and PBBM showed to be an interesting approach in the development of extended-release mini-tablet formulation containing MS, and can be used to rationalize the development of dosage forms.

6.
Braz. J. Pharm. Sci. (Online) ; 58: e20335, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420419

ABSTRACT

Abstract In this study, we investigated the influence of the olfactive stimulus on visual attention. Two groups of 30 subjects participated in two experiments. Both experiments presented two arrays of fruits stimulus intercalated by an olfactive intervention. The stimulus was received in the form of images by the first group and in the form of words by the second group. An eye-tracking device monitored the timekeeping of visual attention dispensed in each stimulus. The results showed that olfactive priming influenced visual attention in both cases but with a greater degree in the images stimulus group. This study shows for the first time that image information is more susceptible to priming olfactive information than wording information. This effect may be associated with the formation of mental images in working memory, aroused by fragrances.

7.
Toxicon ; 204: 64-71, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34742780

ABSTRACT

In silico methodologies can be used in the discovery of new drugs for measuring toxicity, predicting effects of substances not yet analyzed by in vivo methodologies. The ADMET Predictor® software (absorption, distribution, metabolism, elimination, and toxicity [ADMET]) was used in this work to predict toxic effects of microcystin variants MC-LR, MC-YR, MC-RR, and MC-HarHar. In the case of rodents, predictive results for all analyzed variants indicated carcinogenic potential. The predictive model of respiratory sensitivity in this group differentiated microcystins into 2 categories: sensitizer (MC-LR and -YR) and non-sensitizer (MC-HarHar and -RR). Predictive results for humans indicated that MC-LR and -RR are phospholipidosis inducers; on the other hand, MC-LR showed the highest predictive value of permeability in rabbit cornea and probability of crossing lipoprotein barriers (MC-LR>-YR>-HarHar>-RR). Considering bioavailable fractions, microcystins are more likely to cause biological effects in rats than humans, showing significant differences between models. The results of ADMET predictions add valuable information on microcystin toxicity, especially in the case of variants not yet studied experimentally.


Subject(s)
Cyanobacteria , Microcystins , Animals , Carcinogens , Computer Simulation , Microcystins/toxicity , Rabbits , Rats
8.
Drug Dev Ind Pharm ; 47(8): 1342-1352, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34622730

ABSTRACT

OBJECTIVE: This work aims to evaluate the ability of biorelevant dissolution media to simulate the bioavailability of efavirenz tablets, establish an in vitro-in vivo relationship (IVIVR) based on in vivo data using GastroPlus® and simulate formulation changes using DDDPlus™. METHODS: Solubility and drug release profiles were conducted in SLS 0.5% and biorelevant media, such as FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2. The efavirenz physicochemical properties were used to simulate the plasma concentration profile and compare the simulated pharmacokinetic parameters in fasted and fed states. An IVIVR was developed using Loo-Riegelman as the deconvolution method to estimate drug bioavailability. DDDPlus™ was used to perform virtual trials of formulations to evaluate whether formulations changes and the efavirenz particle size could influence the bioavailability. RESULTS: The drug dissolution displayed higher levels in the biorelevant media that simulated gut-fed state (FeSSIF and FeSSIF-V2). The absorption model successfully predicted the efavirenz pharmacokinetics, and FeSSIF-V2 was chosen as the predictive dissolution media, while an IVIVR was established using the Loo-Riegelman deconvolution method. CONCLUSIONS: The present work provides valuable information about efavirenz solubility and kinetics in the gastrointestinal tract, allowing an IVIVR to support future formulation changes. This understanding is essential for rational science-driven formulation development. At least, this study also showed the validity and applicability of in vitro and in silico tools in the regulatory scenario helping on drug development.


Subject(s)
Models, Biological , Alkynes , Benzoxazines , Biological Availability , Computer Simulation , Cyclopropanes , Solubility , Tablets
9.
Braz. J. Pharm. Sci. (Online) ; 56: e17560, 2020. tab, graf
Article in English | LILACS | ID: biblio-1285514

ABSTRACT

Urea's thermal instability and burning on sensitive skin can cause problems for cosmetic formulations. To overcome these drawbacks, urea was incorporated into ordered mesoporous silica (SBA-15). SBA-15 was synthesized using tetraethyl orthosilicate and Pluronic® P123 in an acid medium. Urea (20 wt.%) was incorporated into calcined SBA-15 by the incipient wetness impregnation method. Several techniques were used to characterize the samples. Skin hydration and transepidermal water loss were measured using Corneometer® CM 825 PC and Tewameter® 300 TM. Results showed that the structural properties of SBA-15Urea were similar to pure SBA-15, indicating that SBA-15 remained structured even after urea incorporation. Nitrogen physisorption data showed the volume and surface area of the pores in SBA-15Urea were much lower than those in SBA-15, demonstrating that urea was deposited inside the mesopores. In vivo moisturization studies revealed that SBA-15Urea was not able to reduce transepidermal water loss compared to the other products and control, while forming a non-occlusive surface film on the skin. We conclude that incorporation of urea in the pores of the inorganic SBA-15 matrix is a promising approach to enhancing its stability and providing a prolonged moisturizing effect.


Subject(s)
Urea/analysis , Silicon Dioxide/administration & dosage , Skin/drug effects , Fluid Therapy/adverse effects
10.
Pharmaceutics ; 11(5)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060289

ABSTRACT

A biowaiver is accepted by the Brazilian Health Surveillance Agency (ANVISA) for immediate-release solid oral products containing Biopharmaceutics Classification System (BCS) class I drugs showing rapid drug dissolution. This study aimed to simulate plasma concentrations of fluconazole capsules with different dissolution profiles and run population simulation to evaluate their bioequivalence. The dissolution profiles of two batches of the reference product Zoltec® 150 mg capsules, A1 and A2, and two batches of other products (B1 and B2; C1 and C2), as well as plasma concentration-time data of the reference product from the literature, were used for the simulations. Although products C1 and C2 had drug dissolutions < 85% in 30 min at 0.1 M HCl, simulation results demonstrated that these products would show the same in vivo performance as products A1, A2, B1, and B2. Population simulation results of the ln-transformed 90% confidence interval for the ratio of Cmax and AUC0-t values for all products were within the 80-125% interval, showing to be bioequivalent. Thus, even though the in vitro dissolution behavior of products C1 and C2 was not equivalent to a rapid dissolution profile, the computer simulations proved to be an important tool to show the possibility of bioequivalence for these products.

11.
Skin Pharmacol Physiol ; 32(1): 32-42, 2019.
Article in English | MEDLINE | ID: mdl-30380537

ABSTRACT

AIM: We evaluated the effects of the incorporation of zinc oxide (ZnO) nanoparticles in a mesoporous matrix, aiming to improve the textural, structural and morphological properties and verify their safety so that they can be applied in sunscreen cosmetics. MATERIALS AND METHODS: ZnO nano-particles were incorporated into an ordered mesoporous silica matrix known as Santa Barbara Amorphous-15 (SBA-15), using post-synthesis methodology. The resulting nanocomposites were characterized using X-ray diffraction, small angle X-ray scattering, N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy and predicted in vitro sun protector factor (SPF) estimation. Effectiveness and safety were evaluated by antimicrobial activity, in vitro cell toxicity and non-invasive multi-photon tomography with fluorescence lifetime imaging. RESULTS: The structure of the nanocomposites was similar to that of SBA-15, with little perturbation caused by ZnO incorporation. Nanocomposites had an increased in vitro SPF, reduced cytotoxic activity and favourable antimicrobial properties compared to ZnO. ZnO:SBA-15 nanocomposites exhibited no measurable toxicity when applied to human skin in vivo. CONCLUSION: Due to their suitable physicochemical properties and improved safety compared to bare ZnO nanoparticles, the ZnO:SBA-15 nanocomposites show promise for use in cosmetic applications.


Subject(s)
Drug Compounding/methods , Nanocomposites/administration & dosage , Silicon Dioxide/administration & dosage , Skin Absorption/drug effects , Sunscreening Agents/administration & dosage , Zinc Oxide/administration & dosage , Adult , Animals , BALB 3T3 Cells , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Carriers/metabolism , Drug Combinations , Humans , Mice , Nanocomposites/chemistry , Silicon Dioxide/chemical synthesis , Silicon Dioxide/metabolism , Skin Absorption/physiology , Sunscreening Agents/chemical synthesis , Sunscreening Agents/metabolism , Toxicity Tests, Acute/methods , X-Ray Diffraction/methods , Young Adult , Zinc Oxide/chemical synthesis , Zinc Oxide/metabolism
12.
J Pharm Pharm Sci ; 21(1s): 242s-253s, 2018.
Article in English | MEDLINE | ID: mdl-30348250

ABSTRACT

Hypochlorhydria is a condition where the production of hydrochloric acid in the stomach is decreased. As a result, the intragastric pH is elevated. This condition can be due to a series of causes, such as disease (gastric mucosal infection caused by Helicobacter pylori and is prominent in AIDS patients), ethnicity, age and also the use of antisecretory agents. This may significantly impact the absorption of other drugs that have pH-dependent solubility, such as ketoconazole, a weak base. Within this context, the purpose of this study was to demonstrate how GastroPlusTM - a physiological based software program- can be used to predict clinical pharmacokinetics of ketoconazole in a normal physiological state vs. elevated gastric pH. A simple physiologically based pharmacokinetic model was built and validated to explore the impact that different physiologic conditions in the stomach (hypochlorhydria, drug administered with water and Coca Cola®) had on ketoconazole's bioavailability. The developed model was able to accurately predict the impact of increased pH and beverage co-administration on dissolution and absorption of the drug, and confirmed that complete gastric dissolution is essential. Particle size only mattered in hypochlorhydric conditions due to the incomplete gastric dissolution, as its absorption would depend on intestinal dissolution, which corroborates with previous studies. Therefore, in silico approaches are a potential tool to assess a pharmaceutical product's performance and efficacy under different physiological and pathophysiological states supporting the assessment of different dosing strategies in clinical practice.


Subject(s)
Computer Simulation , Ketoconazole/pharmacokinetics , Models, Biological , Biological Availability , Humans , Hydrogen-Ion Concentration , Intestinal Absorption/drug effects , Ketoconazole/administration & dosage , Ketoconazole/chemistry , Particle Size , Solubility , Surface Properties
13.
Braz. J. Pharm. Sci. (Online) ; 53(4): e00216, 2017. tab, graf
Article in English | LILACS | ID: biblio-889428

ABSTRACT

ABSTRACT The search for new pharmaceutical dosage forms and different drug delivery systems already used in therapeutics is a global trend, serving as an opportunity to expand the portfolio for the pharmaceutical industry. In this context, multiparticulate systems, such as pellets, granules, and minitablets, represent an attractive alternative, given the range of possibilities they provide. Among the methods used in the production of these systems, we highlight the process of extrusion-spheronization for pellet manufacture, wet granulation and hot-melt extrusion for the obtention of granules, and direct compression for minitablets. Although highly versatile, depending on the technology chosen, many processes and formulation variables can influence the ensuing stages of manufacture, as well as the final product. Therefore, the characterization of these small units is of fundamental importance for achieving batch homogeneity and optimal product performance. Analyses, including particle size distribution, morphology, density, porosity, mechanical strength and disintegration, are example tests used in this characterization. The objective of this review was to address the most widely used tests for the physical evaluation of multiparticulate systems.


Subject(s)
Pharmaceutical Preparations , Physical Phenomena/classification , Drug Compounding/statistics & numerical data , Straining of Liquids , Drug Delivery Systems , Dosage Forms , Test Taking Skills/methods
14.
São Paulo; s.n; s.n; 2016. 86 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-846585

ABSTRACT

O uso de programas de computador para prever a absorção de fármacos em humanos e simular perfis de dissolução tem se tornado uma ferramenta bastante valiosa na área farmacêutica. O objetivo deste trabalho foi utilizar métodos in silico por meio dos programas de computador GastroPlusTM e DDDPlusTM para simular curvas de absorção de fármacos, perfis de dissolução e estabelecer correlações in vitro-in vivo (CIVIVs). O material aqui apresentado é constituído por cinco capítulos incluindo os fármacos cetoprofeno, pirimetamina, metronidazol, fluconazol, carvedilol e doxazosina. No capítulo 1 são apresentadas curvas plasmáticas simuladas para comprimidos matriciais de cetoprofeno, sendo estabelecida a CIVIV. A utilização de simulações de ensaios de dissolução intrínseca para os fármacos pirimetamina e metronidazol como uma ferramenta para classificação biofarmacêutica é detalhada no capítulo 2. No capítulo 3, a simulação de curvas plasmáticas a partir de cápsulas de fluconazol contendo diferentes perfis de dissolução é demonstrada como uma ferramenta para bioisenção. Estudos de CIVIV foram também realizados para comprimidos de liberação imediata de carvedilol a partir dos perfis de dissolução no capítulo 4. Já o capítulo 5 trata da aplicação de simulações de ensaios de dissolução para o desenvolvimento de formulações de liberação prolongada de doxazosina. As simulações das curvas plasmáticas, assim como a CIVIV, obtidas com o auxílio do programa GastroPlusTM, além dos ensaios de dissolução intrínsica e os perfis de dissolução obtidos por meio do uso do programa DDDPlusTM apresentaram-se como ferramentas de grande aplicação na previsão de características biofarmacêuticas sobre os fármacos e formulações, permitindo redução de tempo e custo com trabalho experimental em laboratório


The use of computer programs to predict drug absorption in humans and to simulate dissolution profiles has become a valuable tool in the pharmaceutical area. The objective of this study was to use in silico methods through software GastroPlusTM and DDDPlusTM to simulate drug absorption curves and dissolution profiles, and to establish in vitro-in vivo correlations (IVIVCs). The work presented herein is divided into five chapters and includes the drugs ketoprofen, pyrimethamine, metronidazole, fluconazole, carvedilol and doxazosin. In Chapter 1, simulated plasma curves for ketoprofen matrix tablets are presented and IVIVC was established. The use of simulated intrinsic dissolution tests for pyrimethamine and metronidazole as a tool for biopharmaceutics classification is detailed in Chapter 2. In Chapter 3, simulation of plasma curves for fluconazole capsules with different dissolution profiles is demonstrated as a tool for biowaiver. IVIVC studies were also conducted for carvedilol immediate-release tablets from dissolution profiles in Chapter 4. Chapter 5 covers the application of simulated dissolution tests for development of doxazosin extended-release formulations. Simulation of plasma curves and IVIVC using the software GastroPlusTM as well as intrinsic dissolution tests and dissolution profiles using the software DDDPlusTM proved to be a tool of wide application in predicting biopharmaceutical characteristics of drugs and formulations, allowing the reduction of time and costs of experimental laboratory work


Subject(s)
Humans , Male , Female , In Vitro Techniques/methods , Dissolution/methods , Computer Simulation , Technology, Pharmaceutical
15.
Braz. j. pharm. sci ; 51(2): 265-272, Apr.-June 2015. ilus
Article in English | LILACS | ID: lil-755054

ABSTRACT

USP Apparatus 3 (reciprocating cylinder) is a very versatile device for the in vitro assessment of release characteristics of solid oral dosage forms, because it enables the product to be subjected to different dissolution media and agitation speeds in a single run. In this paper, a brief history and a description of this system are presented, along with its applications in the development of immediate and modified release products and in the simulation of fasted and fed states using biorelevant media. Furthermore, a comparison is made with the basket and paddle apparatus, especially highlighting the superior hydrodynamics of USP apparatus 3, since the results are not sensitive to factors such as the presence of sample collection probes or air bubbles in the dissolution medium...


USP aparato 3 (cilindros recíprocos) é um equipamento bastante versátil para a avaliação das características de liberação in vitro de formas farmacêuticas sólidas orais, pois permite que o produto seja submetido a diferentes meios de dissolução e condições de agitação, em um único ensaio. Neste trabalho, são apresentados um breve histórico e a descrição desse sistema, suas aplicações no desenvolvimento de produtos de liberação imediata e modificada, assim como sua utilização na simulação dos estados não alimentado e alimentado com o emprego de meios biorrelevantes. Além disso, uma comparação é estabelecida com o cesto e a pá, com destaque para a hidrodinâmica superior do USP aparato 3, que faz com que os resultados não sejam influenciados por fatores como o uso de sondas de coleta de amostras ou presença de bolhas de ar no meio de dissolução...


Subject(s)
Humans , Equipment and Supplies , Pharmacy/instrumentation , Laboratories , Drug Compounding/methods , Technology, Pharmaceutical/instrumentation
16.
Pharm Dev Technol ; 18(5): 1247-54, 2013.
Article in English | MEDLINE | ID: mdl-22670808

ABSTRACT

A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.


Subject(s)
Primaquine/chemistry , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Diffusion , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Methylcellulose/chemistry , Phosphates/chemistry , Polyethylene Glycols/chemistry , Primaquine/administration & dosage , Solubility , Tablets/chemistry
17.
Braz. arch. biol. technol ; 55(3): 477-484, May-June 2012. ilus, tab
Article in English | LILACS | ID: lil-640200

ABSTRACT

In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.

SELECTION OF CITATIONS
SEARCH DETAIL