Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mol Cell Biochem ; 479(2): 337-350, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37074505

ABSTRACT

Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts. One group of adult male Wistar rats was injected with DOXO (DOXO-group; a cumulative dose of 15 mg/kg in 2-week) or saline (CON-group). One group of DOXO-treated rats was administered with MAHOC before DOXO (Pre-MAHOC group; 2-week) while another group was administered with MAHOC following the 2-week DOXO (Post-MAHOC group). MAHOC administration, before or after DOXO, provided full survival of animals during 12-14 weeks, and significant recoveries in the systemic parameters of animals such as plasma levels of manganese and zinc, total oxidant and antioxidant statuses, and also systolic and diastolic blood pressures. This treatment also significantly improved heart function including recoveries in end-diastolic volume, left ventricular end-systolic volume, heart rate, cardiac output, and prolonged P-wave duration. Furthermore, the MAHOC administrations improved the structure of left ventricles such as recoveries in loss of myofibrils, degenerative nuclear changes, fragmentation of cardiomyocytes, and interstitial edema. Biochemical analysis in the heart tissues provided the important cardioprotective effect of MAHOC on the redox regulation of the heart, such as improvements in activities of glutathione peroxidase and glutathione reductase, and oxygen radical-absorbing capacity of the heart together with recoveries in other systemic parameters of animals, while all of these benefits were observed in the Pre-MAHOC treatment group, more prominently. Overall, one can point out the beneficial antioxidant effects of MAHOC in chronic heart diseases as a supporting and complementing agent to the conventional therapies.


Subject(s)
Allyl Compounds , Antioxidants , Biphenyl Compounds , Cardiotoxicity , Lignans , Phenols , Male , Rats , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Rats, Wistar , Antioxidants/pharmacology , Myocytes, Cardiac , Doxorubicin/toxicity , Oxidative Stress
2.
Cell Biochem Funct ; 41(8): 1526-1542, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014767

ABSTRACT

Cardiac conduction abnormalities are disorders in metabolic syndrome (MetS), however, their mechanisms are unknown. Although ventricular arrhythmia reflects the changes in QT-interval of electrocardiograms associated with the changes in cardiomyocyte action potential durations (APDs), recent studies emphasize role of intercellular crosstalk between cardiomyocytes and nonmyocytes via passive (electrotonic)-conduction. Therefore, considering the possible increase in intercellular interactions of nonmyocytes with cardiomyocytes, we hypothesized an early-cardiac-remodeling characterized by short QT-interval via contributions and modulations of changes by nonmyocytes to the ventricular APs in an early-stage MetS hearts. Following the feeding of 8-week-old rats with a high-sucrose diet (32%; MetS rats) and validation of insulin resistance, there was a significant increase in heart rate and changes in the electrical characteristics of the hearts, especially a shortening in action potential (AP) duration of the papillary muscles. The patch-clamp analysis of ventricular cardiomyocytes showed an increase in the Na+ -channel currents while there were decreases in  l-type Ca2+ -channel (LTCC) currents with unchanged K+ -channel currents. There was an increase in the phosphorylated form of connexin 43 (pCx43), mostly with lateral localization on sarcolemma, while its unphosphorylated form (Cx43) exhibited a high degree of localization within intercalated discs. A high-level positively-stained α-SMA and CD68 cells were prominently localized and distributed in interfibrillar spaces of the heart, implying the possible contributions of myofibroblasts and macrophages to both shortened APDs and abnormal electrical conduction in MetS hearts. Our data propose a previously unrecognized pathway for SQT induction in the heart. This pathway includes not only the contribution of short ventricular-APDs via ionic mechanisms but also increasing contributions of the electrotonic-cardiomyocyte depolarization, spontaneous electrical activity-associated fast heterogeneous impulse conduction in the heart via increased interactions and relocations between cardiomyocytes and nonmyocytes, which may be an explanation for the development of an SQT in early-cardiac-remodeling.


Subject(s)
Arrhythmias, Cardiac , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/metabolism , Myocardium/metabolism , Electrocardiography , Action Potentials
3.
Ultrastruct Pathol ; 47(5): 388-397, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37246956

ABSTRACT

In this study, our aim was to show both the single and combined effects of cisplatin and jaceosidin in SHSY-5Y neuroblastoma cells. For this purpose, we used MTT cellular viability assay, Enzyme-Linked Immunosorbent Assay (ELISA), Transmission Electron Microscopy (TEM), Immunofluorescence Staining Assay (IFA) and Western blotting (WB) assay. According to MTT findings, IC50 dose was detected as 50 µM cisplatin and 160 µM jaceosidin co-application. Therefore, experimental groups were finally selected as control, cisplatin, 160 µM jaceosidin and Cisplatin +160 µM jaceosidin. Cell viability was decreased in all groups, and the IFA findings confirmed the viability analysis. WB data indicated that matrix metalloproteinase 2 and 9 levels, as indicators of metastasis, decreased. While LPO and CAT levels increased in all treatment groups, it was observed that the activity of SOD decreased. When TEM micrographs were investigated, cellular damages were determined. In the light of these results, it can be said that cisplatin and jaceosidin have a potential to increase the effects of each other synergistically.


Subject(s)
Cisplatin , Neuroblastoma , Humans , Cisplatin/pharmacology , Matrix Metalloproteinase 2/pharmacology , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Electrons , Cell Line, Tumor , Apoptosis
4.
J. physiol. biochem ; 79(2): 297-311, may. 2023.
Article in English | IBECS | ID: ibc-222543

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular dysfunction via the pleiotropic effects behind their receptor action. However, it is unknown whether they have a cardioprotective action in the hearts of the elderly. Therefore, we examined the effects of GLP-1R agonist liraglutide treatment (LG, 4 weeks) on the systemic parameters of aged rats (24-month-old) compared to those of adult rats (6-month-old) such as electrocardiograms (ECGs) and systolic and diastolic blood pressure (SBP and DBP). At the cellular level, the action potential (AP) parameters, ionic currents, and Ca2+ regulation were examined in freshly isolated ventricular cardiomyocytes. The LG treatment of aged rats significantly ameliorated the prolongation of QRS duration and increased both SBP and DBP together with recovery in plasma oxidant and antioxidant statuses. The prolonged AP durations and depolarized membrane potentials of the isolated cardiomyocytes from the aged rats were normalized via recoveries in K+ channel currents with LG treatment. The alterations in Ca2+ regulation including leaky-ryanodine receptors (RyR2) could be also ameliorated via recoveries in Na+/Ca2+ exchanger currents with this treatment. A direct LG treatment of isolated aged rat cardiomyocytes could recover the depolarized mitochondrial membrane potential, the increase in both reactive oxygen and nitrogen species (ROS and RNS), and the cytosolic Na+ level, although the Na+ channel currents were not affected by aging. Interestingly, LG treatment of aged rat cardiomyocytes provided a significant inhibition of activated sodium-glucose co-transporter-2 (SGLT2) and recoveries in the depressed insulin receptor substrate 1 (IRS1) and increased protein kinase G (PKG). (AU)


Subject(s)
Animals , Rats , Liraglutide/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Oxidative Stress , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism
5.
J Physiol Biochem ; 79(2): 297-311, 2023 May.
Article in English | MEDLINE | ID: mdl-36515811

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular dysfunction via the pleiotropic effects behind their receptor action. However, it is unknown whether they have a cardioprotective action in the hearts of the elderly. Therefore, we examined the effects of GLP-1R agonist liraglutide treatment (LG, 4 weeks) on the systemic parameters of aged rats (24-month-old) compared to those of adult rats (6-month-old) such as electrocardiograms (ECGs) and systolic and diastolic blood pressure (SBP and DBP). At the cellular level, the action potential (AP) parameters, ionic currents, and Ca2+ regulation were examined in freshly isolated ventricular cardiomyocytes. The LG treatment of aged rats significantly ameliorated the prolongation of QRS duration and increased both SBP and DBP together with recovery in plasma oxidant and antioxidant statuses. The prolonged AP durations and depolarized membrane potentials of the isolated cardiomyocytes from the aged rats were normalized via recoveries in K+ channel currents with LG treatment. The alterations in Ca2+ regulation including leaky-ryanodine receptors (RyR2) could be also ameliorated via recoveries in Na+/Ca2+ exchanger currents with this treatment. A direct LG treatment of isolated aged rat cardiomyocytes could recover the depolarized mitochondrial membrane potential, the increase in both reactive oxygen and nitrogen species (ROS and RNS), and the cytosolic Na+ level, although the Na+ channel currents were not affected by aging. Interestingly, LG treatment of aged rat cardiomyocytes provided a significant inhibition of activated sodium-glucose co-transporter-2 (SGLT2) and recoveries in the depressed insulin receptor substrate 1 (IRS1) and increased protein kinase G (PKG). The recovery in the ratio of phospho-endothelial nitric oxide (pNOS3) level to NOS3 protein level in LG-treated cardiomyocytes implies the involvement of LG-associated inhibition of oxidative stress-induced injury via IRS1-eNOS-PKG pathway in the aging heart. Overall, our data, for the first time, provide important information on the direct cardioprotective effects of GLP-1R agonism with LG in the hearts of aged rats through an examination of recoveries in mitochondrial dysfunction, and both levels of ROS and RNS in left ventricular cardiomyocytes.


Subject(s)
Liraglutide , Oxidative Stress , Rats , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Liraglutide/metabolism , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/metabolism , Mitochondria/metabolism
6.
Mol Cell Biochem ; 477(11): 2609-2625, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35598217

ABSTRACT

Recent studies discuss the evidence of lesser degrees of hyperglycemia contribution to cardiovascular disease (CVD) than impaired glucose tolerance. Indeed, the biggest risk for CVD seems to shift to glucose intolerance in humans with insulin resistance. Although there is a connection between abnormal insulin signaling and heart dysfunction in diabetics, there is also a relation between cardiac insulin resistance and aging heart failure (HF). Moreover, studies have revealed that HF is associated with generalized insulin resistance. Recent clinical outcomes parallel to the experimental data undertaken with antihyperglycemic drugs have shown their beneficial effects on the cardiovascular system through a direct effect on the myocardium, beyond their ability to lower blood glucose levels and their receptor-associated actions. In this regard, several new-class drugs, such as glucagon-like peptide 1 receptor agonists (GLP-1Ra) and sodium-glucose cotransport 2 inhibitors (SGLT2i), can improve cardiac health beyond their ability to control glycemia. In recent years, great improvements have been made toward the possibility of direct heart-targeting effects including modulation of the expression of specific cardiac genes in vivo for therapeutic purposes. However, many questions remain unanswered, regarding their therapeutic effects on cardiomyocytes in heart failure, although there are various cellular levels studies with these drugs. There are also some important comparative studies on the role of SGLT2i versus GLP-1Ra in patients with and without CVD as well as with or without hyperglycemia. Here, we sought to summarize and interpret the available evidence from clinical studies focusing on the effects of either GLP-1Ra or SGLT-2i or their combinations on cardiac structure and function. Furthermore, we documented data from experimental studies, at systemic, organ, and cellular levels. Overall, one can summarize that both clinical and experimental data support that either SGLT2i or GLP-1R agonists have similar benefits as cardioprotective agents in patients with or without impaired glucose tolerance.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Glucose Intolerance , Heart Failure , Insulin Resistance , Sodium-Glucose Transporter 2 Inhibitors , Humans , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/agonists , Glucose Intolerance/drug therapy , Heart Failure/drug therapy , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
7.
BMC Cardiovasc Disord ; 22(1): 147, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35379188

ABSTRACT

PURPOSE: Metabolic syndrome (MetS) became a tremendous public health burden in the last decades. Store-operated calcium entry (SOCE) is a unique mechanism that causes a calcium influx, which is triggered by calcium store depletion. MetS-induced alterations in cardiac calcium signaling, especially in SOCE are still unclear. Therefore, we aim to examine the possible role of SOCE and its components (STIM1 and Orai1) in the MetS-induced cardiac remodeling. METHODS: We used male, adult (12 weeks) Wistar albino rats (n = 20). Animals were randomly divided into two groups which were: control (C) and MetS. We gave 33% sucrose solution to animals instead of water for 24 weeks to establish MetS model. In the end, papillary muscle function was evaluated, and various electrophysiological analyses were made in isolated cardiomyocytes. Additionally, STIM1 and Orai1 protein and mRNA expressions were analyzed. RESULTS: We observed a deterioration in contractility in MetS animals and demonstrated the contribution of SOCE by applying a SOCE inhibitor (BTP2). Calcium spark frequency was increased while its amplitude was decreasing in MetS hearts, which was reversed after SOCE inhibition. The amplitude of transient calcium changes in the MetS group was decreased, and it decreased further BTP2 application. Both protein and mRNA levels of STIM1 and Orai1 were increased significantly in MetS hearts. CONCLUSION: Current data indicate the significant contribution of SOCE to cardiac calcium handling in the MetS model. We think MetS-induced SOCE activation is a compensation mechanism that is required for the continuum of proper cardiac functioning, although the activation can also cause cardiac hypertrophy.


Subject(s)
Calcium , Insulin , Animals , Male , Rats , Calcium/metabolism , Calcium Signaling , Neoplasm Proteins , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Rats, Wistar , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
8.
Clin Exp Pharmacol Physiol ; 49(1): 46-59, 2022 01.
Article in English | MEDLINE | ID: mdl-34519087

ABSTRACT

The pleiotropic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on the heart have been recognised in obese or diabetic patients. However, little is known regarding the molecular mechanisms of these agonists in cardioprotective actions under metabolic disturbances. We evaluated the effects of GLP-1R agonist liraglutide treatment on left ventricular cardiomyocytes from high-carbohydrate induced metabolic syndrome rats (MetS rats), characterised with insulin resistance and cardiac dysfunction with a long-QT. Liraglutide (0.3 mg/kg for 4 weeks) treatment of MetS rats significantly reversed long-QT, through a shortening the prolonged action potential duration and recovering inhibited K+ -currents. We also determined a significant recovery in the leaky sarcoplasmic reticulum (SR) and high cytosolic Ca2+ -level, which are confirmed with a full recovery in activated Na+ /Ca2+ -exchanger currents (INCX ). Moreover, the liraglutide treatment significantly reversed the depolarised mitochondrial membrane potential (MMP), increased production of oxidant markers, and cellular acidification together with the depressed ATP production. Our light microscopy analysis of isolated cardiomyocytes showed marked recoveries in the liraglutide-treated MetS group such as marked reverses in highly dilated T-tubules and SR-mitochondria junctions. Moreover, we determined a significant increase in depressed GLUT4 protein level in liraglutide-treated MetS group, possibly associated with recovery in casein kinase 2α. Overall, the study demonstrated a molecular mechanism of liraglutide-induced cardioprotection in MetS rats, at most, via its pleiotropic effects, such as alleviation in the electrical abnormalities, Ca2+ -homeostasis, and mitochondrial dysfunction in ventricular cardiomyocytes.


Subject(s)
Calcium/metabolism , Dietary Carbohydrates/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Metabolic Syndrome/drug therapy , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Animals , Dietary Carbohydrates/administration & dosage , Glucose/metabolism , Liraglutide/therapeutic use , Metabolic Syndrome/physiopathology , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Rats , Rats, Wistar
9.
J Cell Physiol ; 237(2): 1353-1371, 2022 02.
Article in English | MEDLINE | ID: mdl-34632595

ABSTRACT

Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (IKs ) to the aging-related remodeling of the heart as well as the role of insulin treatment on IKs in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed IKs . Although the protein level of either KCNQ1 or KCNE1 in cardiomyocytes was not affected with aging, PKG level was significantly increased in those cells. The inhibited IKs in ß3 -ARs-stimulated cells could be reversed with a PKG inhibitor, indicating the correlation between PKG-activation and ß3 -ARs activation. Furthermore, in vivo treatment of aged rats, characterized by ß3 -ARs activation, with either insulin or a PKG inhibitor for 2 weeks provided significant recoveries in IKs , prolonged late phases of APs, prolonged QT-intervals, and low heart rates without no effect on insulin resistance. In vivo insulin treatment provided also significant recovery in increased PKG and decreased PIP2 level, without the insulin effect on the KCNQ1 level in ß3 -ARs overexpressed cells. The inhibition of IKs in aged-rat cardiomyocytes seems to be associated with activated ß3 -ARs dependent remodeling in the interaction between KCNQ1 and KCNE1. Significant recoveries in ventricular-repolarization of insulin-treated aged cardiomyocytes via recovery in IKs strongly emphasize two important issues: (1) IKs can be a novel target in aging-associated remodeling in the heart and insulin may be a cardioprotective agent in the maintenance of normal heart function during the aging process. (2) This study is one of the first to demonstrate insulin's benefits on long-QT in insulin-resistant aged rats by accelerating the ventricular AP repolarization through reversing the depressed IKs via affecting the ß3 -ARs signaling pathway and particularly affecting activated PKG.


Subject(s)
Insulin Resistance , Long QT Syndrome , Potassium Channels, Voltage-Gated , Action Potentials , Animals , Insulin/metabolism , Insulin/pharmacology , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/metabolism , Potassium Channels, Voltage-Gated/metabolism , Rats , Signal Transduction
10.
Mol Cell Biochem ; 476(10): 3827-3844, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34114148

ABSTRACT

Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)-mitochondria (Mit) miscommunication. Tica treatment of MetS rats (150 mg/kg/day for 15 days) significantly reversed the altered parameters of action potentials by reversing sarcolemmal ionic currents carried by voltage-dependent Na+ and K+ channels, and Na+/Ca2+-exchanger in the cells, expressed P2Y12 receptors. The increased basal-cytosolic Ca2+ level and depressed SR Ca2+ load were also reversed in Tica-treated cells, at most, though recoveries in the phosphorylation levels of ryanodine receptors and phospholamban. Moreover, there were marked recoveries in Mit structure and function (including increases in both autophagosomes and fragmentations) together with recoveries in Mit proteins and the factors associated with Ca2+ transfer between SR-Mit. There were further significant recoveries in markers of both ER stress and oxidative stress. Taken into consideration the Tica-induced prevention of ER stress and mitochondrial dysfunction, our data provided an important document on the pleiotropic effects of Tica in the electrical activity of the cardiomyocytes from MetS rats. This protective effect seems through recoveries in SR-Mit miscommunication besides modulation of different sarcolemmal ion-channel activities, independent of P2Y12 receptor antagonism.


Subject(s)
Action Potentials/drug effects , Dietary Carbohydrates/adverse effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Ticagrelor/pharmacology , Animals , Dietary Carbohydrates/pharmacology , Ion Transport/drug effects , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Rats , Rats, Wistar , Sarcoplasmic Reticulum/pathology , Signal Transduction/drug effects
11.
Cardiovasc Drugs Ther ; 34(4): 487-501, 2020 08.
Article in English | MEDLINE | ID: mdl-32377826

ABSTRACT

BACKGROUND: Previous studies have demonstrated that a high-carbohydrate intake could induce metabolic syndrome (MetS) in male rats with marked cardiac functional abnormalities. In addition, studies mentioned some benefits of insulin application on these complications, but there are considerable disagreements among their findings. Therefore, we aimed to extend our knowledge on the in-vitro influence of insulin on left ventricular dysfunction and also in the isolated cardiomyocytes from MetS rats. RESULTS: At the organ function level, an acute insulin application (100-nM) provided an important beneficial effect on the left ventricular developed pressure in MetS rats. Furthermore, to treat the freshly isolated cardiomyocytes from MetS rats with insulin provided marked recoveries in elevated resting intracellular Ca2+-level, as well as significant prevention of prolonged action potential through an augmentation in depressed K+-channel currents. Insulin also normalized the cellular levels of increased ROS and phosphorylation of PKCα, together with normalizations of apoptotic markers in MetS cardiomyocytes through the insulin-mediated regulation of phospho-Akt. Since not only elevated PKCα-activity but also reductions in phospho-Akt are key modulators of titin-based cardiomyocyte stiffening in hyperglycemia, insulin treatment of the cardiomyocytes prevented the activation of titin via the above pathways. Furthermore, CK2α-activation and NOS-phosphorylation could be prevented with insulin treatment. Mechanistically, we found that impaired insulin signaling and elevated PKCα and CK2α activities, as well as depressed Akt phosphorylation, are key modulators of titin-based cardiomyocyte stiffening in MetS rats. CONCLUSION: We propose that restoring normal kinase activities and also increases in phospho-Akt by insulin can contribute marked recoveries in MetS heart function, indicating a promising approach to modulate titin-associated factors in heart dysfunction associated with type-2 diabetes mellitus. Graphical Abstract.


Subject(s)
Casein Kinase II/metabolism , Connectin/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin/pharmacology , Metabolic Syndrome/drug therapy , Myocytes, Cardiac/drug effects , Ventricular Dysfunction, Left/drug therapy , Ventricular Function, Left/drug effects , Action Potentials/drug effects , Animals , Calcium Signaling/drug effects , Disease Models, Animal , Isolated Heart Preparation , Male , Metabolic Syndrome/enzymology , Metabolic Syndrome/physiopathology , Myocytes, Cardiac/enzymology , Oxidative Stress/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/physiopathology , Ventricular Pressure/drug effects
12.
Mol Cell Biochem ; 469(1-2): 97-107, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32301059

ABSTRACT

Ticagrelor, a P2Y12-receptor inhibitor, and a non-thienopyridine agent are used to treat diabetic patients via its effects on off-target mechanisms. However, the exact sub-cellular mechanisms by which ticagrelor exerts those effects remains to be elucidated. Accordingly, the present study aimed to examine whether ticagrelor influences directly the cardiomyocytes function under insulin resistance through affecting mitochondria-sarco(endo)plasmic reticulum (SER) cross-talk. Therefore, we analyzed the function and ultrastructure of mitochondria and SER in insulin resistance-mimicked (50-µM palmitic acid for 24-h) H9c2 cardiomyocytes in the presence or absence of ticagrelor (1-µM for 24-h). We found that ticagrelor treatment significantly prevented depolarization of mitochondrial membrane potential and increases in reactive oxygen species with a marked increase in the ATP level in insulin-resistant H9c2 cells. Ticagrelor treatment also reversed the increases in the resting level of free Ca2+ and mRNA level of P2Y12 receptors as well as preserved ER stress and apoptosis in insulin-resistant H9c2 cells. Furthermore, we determined marked repression with ticagrelor treatment in the increased number of autophagosomes and degeneration of mitochondrion, including swelling and loss of crista besides recoveries in enlargement and irregularity seen in SER in insulin-resistant H9c2 cells. Moreover, ticagrelor treatment could prevent the altered mRNA levels of Becklin-1 and type 1 equilibrative nucleoside transporter (ENT1), which are parallel to the preservation of ultrastructural ones. Our overall data demonstrated that ticagrelor can directly affect cardiomyocytes and provide marked protection against ER stress and dramatic induction of autophagosomes, and therefore, can alleviate the ER stress-induced oxidative stress increase and cell apoptosis during insulin resistance.


Subject(s)
Apoptosis/drug effects , Autophagosomes/drug effects , Endoplasmic Reticulum Stress/drug effects , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Ticagrelor/pharmacology , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Beclin-1/genetics , Beclin-1/metabolism , Calcium/metabolism , Cell Line , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Insulin/metabolism , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron , Mitochondria/metabolism , Mitochondria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Palmitic Acid/pharmacology , Rats , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism
13.
Biol Trace Elem Res ; 198(1): 16-24, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31993942

ABSTRACT

Insulin resistance, impaired glucose regulation, dyslipidemia, low-grade inflammation, and elevated blood pressure are main components of the metabolic syndrome (MetS). Trace elements, especially zinc (Zn) and copper (Cu) and cytokines, have physiological importance due to their presence in inflammatory processes and glucose metabolism. Therefore, this study aimed to investigate the potential relationship between cytokine responses and trace elements in different tissues of sucrose-induced MetS rats compared with healthy controls (n:7/groups). Tissue Zn concentrations are found to be decreased in the liver (p = 0.00) and pancreas (p < 0.01) and increased in the kidney (p = 0.00) and heart tissues (p < 0.001) of MetS group. Serum Zn levels were also found to be decreased in MetS compared with control group (p < 0.01), while there was any significant difference in serum Cu concentrations between groups. The Cu concentration (p < 0.01) was found decreased, and Zn/Cu ratio (p < 0.01) was found increased in kidney tissues. TNF-α, IL-6 levels were found increased in MetS tissues. With this study, the Zn and Cu concentrations and their relationships with inflammatory response in different tissues in MetS are reported for the first time in the literature. Serum and tissue Zn levels with diversities in distribution were found to have a higher impact on MetS pathogenesis than Cu levels. It has been concluded that there is a relationship between Zn and Cu concentrations and inflammatory marker levels in MetS pathophysiological mechanisms.


Subject(s)
Metabolic Syndrome , Trace Elements , Animals , Biomarkers , Copper , Rats , Zinc
14.
J Cell Physiol ; 234(8): 13370-13386, 2019 08.
Article in English | MEDLINE | ID: mdl-30613975

ABSTRACT

Role of ß3 -AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of ß3 -AR activation in depressed myocardial contractility using a specific agonist CL316243 or using ß3 -AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+ ]i ) and depressed cardiac contractility, we first demonstrated a relation between ß3 -AR activation and increased [Zn2+ ]i , parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+ ]i induced a significant increase in messenger RNA (mRNA) level of ß3 -AR in cardiomyocytes. Either ß3 -AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3ß/GSK-3ß, and PKG expression level in cardiomyocytes. Although ß3 -AR activation induced depression in both Na+ - and Ca2+ -currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+ -currents. The ß3 -AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+ -handling, including its effect on Ca2+ -leakage from sarcoplasmic reticulum (SR). Our cellular level data with ß3 -AR agonism were supported with the data on high [Zn2+ ]i and ß3 -AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of ß3 -AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between ß3 -AR activation, NO-signaling, and [Zn2+ ]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with ß3 -AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the ß3 -AR agonism would be friend or become foe remains to be mystery, yet.


Subject(s)
Myocardial Contraction/physiology , Reactive Nitrogen Species/metabolism , Receptors, Adrenergic, beta-3/metabolism , Zinc/metabolism , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Calcium Signaling , Cell Line , Dioxoles/pharmacology , Male , Membrane Potential, Mitochondrial , Metabolic Syndrome/metabolism , Models, Cardiovascular , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, Adrenergic, beta-3/genetics
15.
Mitochondrion ; 44: 41-52, 2019 01.
Article in English | MEDLINE | ID: mdl-29307859

ABSTRACT

Functional contribution of S(E)R-mitochondria coupling to normal cellular processes is crucial and any alteration in S(E)R-mitochondria axis may be responsible for the onset of diseases. Mitochondrial free Zn2+ level in cardiomyocytes ([Zn2+]Mit) is lower comparison to either its cytosolic or S(E)R level under physiological condition. However, there is little information about distribution of Zn2+-transporters on mitochondria and role of Zn2+-dependent mitochondrial-function associated with [Zn2+]Mit. Since we recently have shown how hyperglycemia (HG)-induced changes in ZIP7 and ZnT7 contribute to Zn2+-transport across S(E)R and contribute to S(E)R-stress in the heart, herein, we hypothesized that these transporters can also be localized to mitochondria and affect the S(E)R-mitochondria coupling, and thereby contribute to cellular Zn2+-muffling between S(E)R-mitochondria in HG-cells. Mitochondrial localizations of ZIP7 and ZnT7 were demonstrated using fluorescence technique while they were confirmed in isolated mitochondrial fractions using biochemical analysis. Markedly decreased ZIP7 and increased ZnT7 levels were measured in isolated mitochondrial fractions from either HG- or doxorubicin, DOX (as positive control)-treated cardiomyocytes. Significantly increases in [Zn2+]Mit and ROS production levels and depolarized mitochondrial membrane potential were also measured in HG cells. The expression levels of some key proteins, responsible for proper S(E)R-mitochondria coupling such as Mfn-1, Fis-1, OPA1, BAP31, STIM1 and PML in either HG- or DOX-cells were supported our above hypothesis, strongly. Overall, this study provides an important description about the role of ZIP7 and ZnT7, localized to both mitochondria and S(E)R and contribute to cellular Zn2+-muffling between cellular-compartments in HG or hypertrophic cardiomyocytes via affecting S(E)R-mitochondria coupling. Any alteration in this axis and/or cellular [Zn2+] may provide new insight for prevention/therapy of HF in diabetes and/or hypertrophy.


Subject(s)
Cation Transport Proteins/metabolism , Endoplasmic Reticulum/metabolism , Hyperglycemia/pathology , Mitochondria/metabolism , Myocytes, Cardiac/physiology , Zinc/metabolism , Animals , Cations, Divalent/metabolism , Gene Expression Profiling , Male , Membrane Potentials , Mitochondrial Membranes/physiology , Models, Biological , Rats, Wistar , Reactive Oxygen Species/metabolism
16.
Cardiovasc Diabetol ; 17(1): 144, 2018 11 17.
Article in English | MEDLINE | ID: mdl-30447687

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a prevalent risk factor for cardiac dysfunction. Although SGLT2-inhibitors have important cardioprotective effects in hyperglycemia, their underlying mechanisms are complex and not completely understood. Therefore, we examined mechanisms of a SGLT2-inhibitor dapagliflozin (DAPA)-related cardioprotection in overweight insulin-resistant MetS-rats comparison with insulin (INSU), behind its glucose-lowering effect. METHODS: A 28-week high-carbohydrate diet-induced MetS-rats received DAPA (5 mg/kg), INSU (0.15 mg/kg) or vehicle for 2 weeks. To validate MetS-induction, we monitored all animals weekly by measuring body weight, blood glucose and HOMO-IR index, electrocardiograms, heart rate, systolic and diastolic pressures. RESULTS: DAPA-treatment of MetS-rats significantly augmented the increased blood pressure, prolonged Q-R interval, and low heart rate with depressed left ventricular function and relaxation of the aorta. Prolonged-action potentials were preserved with DAPA-treatment, more prominently than INSU-treatment, at most, through the augmentation in depressed voltage-gated K+-channel currents. DAPA, more prominently than INSU-treatment, preserved the depolarized mitochondrial membrane potential, and altered mitochondrial protein levels such as Mfn-1, Mfn-2, and Fis-1 as well as provided significant augmentation in cytosolic Ca2+-homeostasis. Furthermore, DAPA also induced significant augmentation in voltage-gated Na+-currents and intracellular pH, and the cellular levels of increased oxidative stress, protein-thiol oxidation and ADP/ATP ratio in cardiomyocytes from MetS rats. Moreover, DAPA-treatment normalized the increases in the mRNA level of SGLT2 in MetS-rat heart. CONCLUSIONS: Overall, our data provided a new insight into DAPA-associated cardioprotection in MetS rats, including suppression of prolonged ventricular-repolarization through augmentation of mitochondrial function and oxidative stress followed by improvement of fusion-fission proteins, out of its glucose-lowering effect.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Heart Rate/drug effects , Heart Ventricles/drug effects , Insulin Resistance , Metabolic Syndrome/drug therapy , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Blood Glucose/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Insulin/pharmacology , Male , Membrane Potential, Mitochondrial/drug effects , Metabolic Syndrome/blood , Metabolic Syndrome/complications , Metabolic Syndrome/physiopathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Potassium Channels, Voltage-Gated/drug effects , Potassium Channels, Voltage-Gated/metabolism , Rats, Wistar , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Ventricular Function, Left/drug effects , Voltage-Gated Sodium Channels/drug effects , Voltage-Gated Sodium Channels/metabolism
17.
Exp Gerontol ; 110: 172-181, 2018 09.
Article in English | MEDLINE | ID: mdl-29908347

ABSTRACT

Aging in humans represents declining in cardio-protective systems, however its mechanisms are not known yet. We aimed to analyse how aging affects key mechanisms responsible for contractile dysfunction via comparing the improperly synchrony between electrical and mechanical activities in male aged-rats (24-month old) comparison to those of adult-rats (6-month old). We determined significantly increased systemic oxidative stress with decreased antioxidant capacity, clear insulin resistance and hypertrophy in aged-rats with normal fasting blood glucose. We also determined significantly high level of reactive oxygen species, ROS production in fluorescent dye chloromethyl-2',7'-dichlorodihydrofluoroscein diacetate (DCFDA) loaded isolated cardiomyocytes from aged-rats, confirming the increased oxidative stress in these hearts. In situ electrocardiograms, ECGs presented significant prolongations in RR- and QT-intervals in the aged-rats. Invasive hemodynamic measurements demonstrated marked increases in the heart rate and mean arterial pressure and decreases in the ejection-fraction and preload-recruitable stroke-work, together with depressed contraction and relaxation activities in aortic rings. In light and electron microscopy examinations in aged-rats, significant increases in muscle fibre radius and amount of collagen fibres were detected in the heart as well as markedly flattened and partial local splitting in elastic lamellas in the aorta, besides irregularly clustered mitochondria and lysosomes around the myofilaments in cardiomyocytes. MitoTEMPO treatment of tissue samples and cardiomyocytes from aged-rats for 1-h induced significant structural improvements. In the second part of our study, we have shown that mitochondria-targeted antioxidant MitoTEMPO antagonized all alterations in the heart samples as well as penylephrine-induced contractile and acetylcholine-induced relaxation responses of aged-rat aortic rings. Overall, the present data strongly support the important role of mitochondrial oxidative stress in the development of aged-related insufficiencies and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in aging-associated complications.


Subject(s)
Aging/physiology , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Organophosphorus Compounds/pharmacology , Piperidines/pharmacology , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Aorta/drug effects , Glucose Tolerance Test , Insulin Resistance , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Rats , Rats, Wistar
18.
J Trace Elem Med Biol ; 48: 202-212, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29773183

ABSTRACT

Intracellular labile (free) Zn2+-level ([Zn2+]i) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn2+]i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn2+]i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn2+]i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn2+]i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn2+]i induced inhibitions in voltage-dependent K+-channel currents, such as transient outward K+-currents, Ito, steady-state currents, Iss and inward-rectifier K+-currents, IK1, reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both Iss and IK1, while no effect on Ito. However, the increased-[Zn2+]i could induce marked activation in ATP-sensitive K+-channel currents, IKATP, depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn2+]i with no change in mRNA level of Kv4.2, while the mRNA level of IKATP subunit, SUR2A was increased significantly with increased-[Zn2+]i, being reversible with DTT. Overall we demonstrated that high-[Zn2+]i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K+-currents, although activation of IKATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn2+]i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress.


Subject(s)
Adenosine Triphosphate/metabolism , Arrhythmias, Cardiac/metabolism , Cytosol/chemistry , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Sulfhydryl Compounds/metabolism , Zinc/metabolism , Animals , Cytosol/metabolism , Heart Ventricles/cytology , Male , Myocytes, Cardiac/cytology , Oxidation-Reduction , Rats , Rats, Wistar , Zinc/chemistry
19.
Anatol J Cardiol ; 19(4): 259-266, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29615543

ABSTRACT

OBJECTIVE: Depressed mechanical activity is a marked complication in diabetics. Hypoxia has properties for novel diagnostic and therapeutic strategies, while intermittent hypoxia (IH) provides early functional and histologic remodeling, including some cardio benefits in early hemodynamic alterations with histologic remodeling and delayed changes in peripheral vasoreactivity. Therefore, we aimed to examine whether IH application presents a cardioprotective effect, via stabilization of hypoxia-inducible factor (HIF) in streptozotocin (STZ)-induced diabetic rat heart. METHODS: Male 10-week-old Wistar rats were randomly assigned as control group (C), IH group, (STZ)-induced diabetic group (DM) and IH applied DM group (DM+IH). Diabetes duration was kept 6 weeks and IH groups were exposed to hypobaric hypoxia at about 70 kPa (including ~14% PO2; 6 h/day for 6-weeks). RESULTS: Depressed left ventricular developed pressure (LVDP) and prolonged contraction and relaxation of Langendorff-perfused hearts, as well as increased total oxidative status from streptozotocin (STZ)-induced diabetic rats were markedly prevented with IH application. IH application induced significant increase in protein expression levels of both HIF-1α and vascular endothelial growth factor (VEGF), in both control and diabetic rat hearts, whereas there were significant decreases in the protein levels of prolyl-4 hydroxylase domain enzymes, PHD2, and PHD3 in diabetic hearts. Furthermore, IH application induced marked increases in protein levels of matrix metalloproteinases, MMP-2 and MMP-9 and capillary density in left ventricle of diabetic rats. CONCLUSION: Overall, we presented how IH application has a beneficial cardiovascular remodeling effect in left ventricular function of diabetic rats, at most, via affecting increased oxidative stress and HIF-VEGF related angiogenesis, providing information on hyperglycemia associated new targets and therapeutic strategies.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Cardiomyopathies/physiopathology , Heart Ventricles/physiopathology , Hypoxia/physiopathology , Animals , Diabetic Cardiomyopathies/metabolism , Disease Models, Animal , Heart Ventricles/metabolism , Hypoxia-Inducible Factor 1/metabolism , Male , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/metabolism
20.
J Cell Mol Med ; 22(3): 1944-1956, 2018 03.
Article in English | MEDLINE | ID: mdl-29333637

ABSTRACT

Zn2+ -homoeostasis including free Zn2+ ([Zn2+ ]i ) is regulated through Zn2+ -transporters and their comprehensive understanding may be important due to their contributions to cardiac dysfunction. Herein, we aimed to examine a possible role of Zn2+ -transporters in the development of heart failure (HF) via induction of ER stress. We first showed localizations of ZIP8, ZIP14 and ZnT8 to both sarcolemma and S(E)R in ventricular cardiomyocytes (H9c2 cells) using confocal together with calculated Pearson's coefficients. The expressions of ZIP14 and ZnT8 were significantly increased with decreased ZIP8 level in HF. Moreover, [Zn2+ ]i was significantly high in doxorubicin-treated H9c2 cells compared to their controls. We found elevated levels of ER stress markers, GRP78 and CHOP/Gadd153, confirming the existence of ER stress. Furthermore, we measured markedly increased total PKC and PKCα expression and PKCα-phosphorylation in HF. A PKC inhibition induced significant decrease in expressions of these ER stress markers compared to controls. Interestingly, direct increase in [Zn2+ ]i using zinc-ionophore induced significant increase in these markers. On the other hand, when we induced ER stress directly with tunicamycin, we could not observe any effect on expression levels of these Zn2+ transporters. Additionally, increased [Zn2+ ]i could induce marked activation of PKCα. Moreover, we observed marked decrease in [Zn2+ ]i under PKC inhibition in H9c2 cells. Overall, our present data suggest possible role of Zn2+ transporters on an intersection pathway with increased [Zn2+ ]i and PKCα activation and induction of HF, most probably via development of ER stress. Therefore, our present data provide novel information how a well-controlled [Zn2+ ]i via Zn2+ transporters and PKCα can be important therapeutic approach in prevention/treatment of HF.


Subject(s)
Cation Transport Proteins/genetics , Heart Failure/genetics , Heart Transplantation , Sarcoplasmic Reticulum/metabolism , Zinc Transporter 8/genetics , Zinc/metabolism , Adult , Animals , Case-Control Studies , Cation Transport Proteins/metabolism , Cations, Divalent , Cell Line , Doxorubicin/pharmacology , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/surgery , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Male , Middle Aged , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Rats , Sarcoplasmic Reticulum/drug effects , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology , Zinc Transporter 8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...