Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 64(2): 107230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824973

ABSTRACT

BACKGROUND: Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS: Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS: It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION: These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Staphylococcus aureus/virology , Staphylococcus aureus/drug effects , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Humans , Staphylococcus Phages , Peptides/chemistry , Peptides/metabolism , Molecular Dynamics Simulation , Protein Binding , Molecular Docking Simulation , Viral Proteins/metabolism , Viral Proteins/chemistry , Teichoic Acids/metabolism , Bacteriophages
2.
Acta Chim Slov ; 71(2): 215-225, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38919104

ABSTRACT

1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (6a-j) were evaluated against Para-influenza-3, Reovirus-1, Sindbis, Coxsackie B4 and Punto Toro viruses. New 1-methyl-1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (7a-c) were synthesized to evaluate the contribution of methyl substitution at position 1- of the indole ring to antiviral activity. The test results showed that compounds 5-trifluoromethoxy- substituted 6c (EC50: 2-9 µM) and 5-bromo- substituted 6f (EC50: 2-3 µM) have non-toxic selective antiviral activity while not all standards are active against Reovirus-1. Molecular docking studies of 6c and 6f were carried out to determine the possible binding positions with Reovirus-1. Trifluoromethoxy and bromine substitutions at position 5- of the indole ring provided selective antiviral activity, while methyl substitution at position 1- of the indole ring significantly decreased the activity and increased toxicity against Reovirus-1.


Subject(s)
Antiviral Agents , Thiosemicarbazones , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Molecular Docking Simulation , Animals , Indoles/pharmacology , Indoles/chemistry , Humans , Structure-Activity Relationship
3.
Turk J Chem ; 45(4): 1146-1154, 2021.
Article in English | MEDLINE | ID: mdl-34707440

ABSTRACT

Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe3+) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from 'open' state to 'closed' state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe3+ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between 'closed' state to 'open' state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in 'closed' state.

4.
Bioorg Chem ; 104: 104202, 2020 11.
Article in English | MEDLINE | ID: mdl-32892069

ABSTRACT

In this work, novel 5-fluoro-1-methyl/ethyl-1H-indole-2,3-dione 3-[4-(substituted phenyl)-thiosemicarbazones] 6a-n and 7a-n were synthesized. The antiviral effects of the compounds were tested against HSV-1 (KOS), HSV-2 (G) HSV-1 TK- KOS ACVr and VV in HEL cell cultures using acyclovir and ganciclovir as standards, and Coxsackie B4 virus in Vero cell cultures using ribavirin and mycophenolic acid as standards. R2 ethyl substituted 7 derivatives were found effective against viruses tested. R1 4-CF3 substituted 7d, R1 4-OCH3 substituted 7 g and R1 3-Cl substituted 7 l showed activity against HSV-1 (KOS), HSV-2 (G) HSV-1 TK- KOS ACVr and VV. Whereas only R1 4-Br substituted 7n has selective activity against coxsackie B4 virus. Molecular modelingstudies of 7d and 7l were performed to determine binding side on HSV-1 glycoprotein B and D, HSV-2 glycoprotein B structures.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL