Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Lipid Res ; 42(3): 379-89, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11254750

ABSTRACT

The central region of apolipoprotein A-I (apoA-I), spanning residues 143--165, has been implicated in lecithin:cholesterol acyltransferase (LCAT) activation and also in high density lipoprotein (HDL) structural rearrangements. To examine the role of individual amino acids in these functions, we constructed, overexpressed, and purified two additional point mutants of apoA-I (P143R and R160L) and compared them with the previously studied V156E mutant. These mutants have been reported to occur naturally and to affect HDL cholesterol levels and cholesterol esterification in plasma. The P143R and R160L mutants were effectively expressed in Escherichia coli as fusion proteins and were isolated in at least 95% purity. In the lipid-free state, the mutants self-associated similarly to wild-type protein. All the mutants, including V156E, were able to lyse dimyristoylphosphatidylcholine liposomes. In the lipid-bound state, the major reconstituted HDL (rHDL) of the mutants had diameters similar to wild type (96--98 A). Circular dichroism and fluorescence methods revealed no major differences among the structures of the lipid-free or lipid-bound mutants and wild type. In contrast, the V156E mutant had exhibited significant structural, stability, and self-association differences compared with wild-type apoA-I in the lipid-free state, and formed rHDL particles with larger diameters. In this study, limited proteolytic digestion with chymotrypsin showed that the V156E mutant, in lipid-free form, has a distinct digestion pattern and surface exposure of the central region, compared with wild type and the other mutants. Reactivity of rHDL with LCAT was highest for wild type (100%), followed by P143R (39%) and R160L (0.6%). Tested for their ability to rearrange into 78-A particles, the rHDL of the two mutants (P143R and R160L) behaved normally, compared with the rHDL of V156E, which showed no rearrangement after the 24-h incubation with low density lipoprotein (LDL). Similarly, the rHDL of V156E was resistant to rearrangement in the presence of apoA-I or apoA-II. These results indicate that structural changes are absent or modest for the P143R and R160L mutants, especially in rHDL form; that these mutants have normal conformational adaptability; and that LCAT activation is obliterated for R160L.Thus, individual amino acid changes may have markedly different structural and functional consequences in the 143--165 region of apoA-I. The R160L mutation appears to have a direct effect in LCAT activation, while the P143R mutation results in only minor structural and functional effects. Also, the processes for LCAT activation and hinge mobility appear to be distinct even if the same region of apoA-I is involved. -- Cho, K-H., D. M. Durbin, and A. Jonas. Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements. J. Lipid Res. 2001. 42: 379--389.


Subject(s)
Amino Acids/physiology , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/pharmacology , Lipoproteins, HDL/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Apolipoprotein A-I/genetics , Chemical Phenomena , Chemistry, Physical , Chymotrypsin/metabolism , Circular Dichroism , Dimyristoylphosphatidylcholine , Electrophoresis, Polyacrylamide Gel , Enzyme Activation/drug effects , Liposomes/metabolism , Mutagenesis, Site-Directed , Phosphatidylcholines , Protein Conformation , Recombinant Proteins , Spectrometry, Fluorescence , Structure-Activity Relationship
2.
J Biol Chem ; 276(19): 15832-9, 2001 May 11.
Article in English | MEDLINE | ID: mdl-11279034

ABSTRACT

High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.


Subject(s)
Apolipoprotein A-II/metabolism , CD36 Antigens/metabolism , Cholesterol/metabolism , Lipoproteins, HDL/metabolism , Membrane Proteins , Receptors, Immunologic , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Apolipoprotein A-II/blood , Binding, Competitive , CHO Cells , Cell Line , Cholesterol Esters/metabolism , Cricetinae , Humans , Kinetics , Phosphatidylcholines/metabolism , Phospholipids/metabolism , Receptors, Lipoprotein/metabolism , Receptors, Scavenger , Recombinant Proteins/metabolism , Scavenger Receptors, Class B
3.
J Lipid Res ; 42(2): 309-13, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11181762

ABSTRACT

Apolipoprotein A-I (apoA-I) is an important ligand for the high density lipoprotein (HDL) scavenger receptor class B type I (SR-BI). SR-BI binds both free and lipoprotein-associated apoA-I, but the effects of particle size, composition, and apolipoprotein conformation on HDL binding to SR-BI are not understood. We have studied the effect of apoA-I conformation on particle binding using native HDL and reconstituted HDL particles of defined composition and size. SR-BI expressed in transfected Chinese hamster ovary cells was shown to bind human HDL(2) with greater affinity than HDL(3), suggesting that HDL size, composition, and possibly apolipoprotein conformation influence HDL binding to SR-BI. To discriminate between these factors, SR-BI binding was studied further using reconstituted l-alpha-palmitoyloleoyl-phosphatidylcholine-containing HDL particles having identical components and equal amounts of apoA-I, but differing in size (7.8 vs. 9.6 nm in diameter) and apoA-I conformation. The affinity of binding to SR-BI was significantly greater (50-fold) for the larger (9.6-nm) particle than for the 7.8-nm particle. We conclude that differences in apoA-I conformation in different-sized particles markedly influence apoA-I recognition by SR-BI. Preferential binding of larger HDL particles to SR-BI would promote productive selective cholesteryl ester uptake from larger cholesteryl ester-rich HDL over lipid-poor HDL.


Subject(s)
Apolipoprotein A-I/chemistry , CD36 Antigens/metabolism , Lipoproteins, HDL/metabolism , Membrane Proteins , Receptors, Immunologic , Receptors, Lipoprotein , Electrophoresis, Polyacrylamide Gel , Humans , Particle Size , Protein Binding , Protein Conformation , Receptors, Scavenger , Recombinant Proteins/chemistry , Scavenger Receptors, Class B
4.
J Lipid Res ; 40(12): 2293-302, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10588955

ABSTRACT

We examined the effect of lipid-free apolipoprotein A-I (apoA-I) and apoA-II on the structure of reconstituted high density lipoproteins (rHDL) and on their reactivity as substrates for lecithin:cholesterol acyltransferase (LCAT). First, homogeneous rHDL were prepared with either apoA-I or apoA-II using palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. Lipid-free apoA-I and apoA-II were labeled with the fluorescent probe dansyl chloride (DNS). The binding kinetics of apoA-I-DNS to A-II-POPCrHDL and of apoA-II-DNS to A-I-POPCrHDL were monitored by fluorescence polarization, adding the lipid-free apolipoproteins to the rHDL particles in a 1:1 molar ratio. For both apolipoproteins, the binding to rHDL was rapid, occurring within 5 min. Next, the effect on rHDL structure and particle size was determined after incubations of lipid-free apolipoproteins with homogeneous rHDL at 37 degrees C from 0.5 to 24 h. The products were analyzed by non-denaturing gradient gel electrophoresis followed by Western blotting. The effect of apoA-I or apoA-II on 103 A A-II-POPCrHDL was a rearrangement into 78 A particles containing apoA-I and/or apoA-II, and 90 A particles containing only apoA-II. The effect of apoA-I or apoA-II on 98 A A-I-POPCrHDL was a rearrangement into complexes ranging in size from 78 A to 105 A containing apoA-I and/or apoA-II, with main particles of 78 A, 88 A, and 98 A. Finally, the effect of lipid-free apoA-I and apoA-II on rHDL as substrates for LCAT was determined. The addition of apoA-I to A-II-POPCrHDL increased its reactivity with LCAT 24-fold, reflected by a 4-fold increase in apparent V(m)ax and a 6-fold decrease in apparent K(m), while the addition of apoA-II to A-II-POPCrHDL had no effect on its minimal reactivity with LCAT. In contrast, the addition of apoA-II to A-I-POPCrHDL decreased the reaction with LCAT by about one-half. The inhibition was due to a 2-fold increase in apparent K(m); there was no significant change in apparent V(m)ax. Likewise, the addition of apoA-I to A-I-POPCrHDL inhibited the reaction with LCAT to about two-thirds that of A-I-POPCrHDL without added apoA-I. In summary, both lipid-free apoA-I and apoA-II can promote the remodeling of rHDL into hybrid particles of primarily smaller size. Both apoA-I and apoA-II affect the reactivity of rHDL with LCAT, when added to the reaction in lipid-free form. These results have important implications for the roles of lipid-free apoA-I and apoA-II in HDL maturation and metabolism.


Subject(s)
Apolipoprotein A-II/metabolism , Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Apolipoprotein A-I/pharmacology , Apolipoprotein A-II/pharmacology , Dansyl Compounds/metabolism , Fluorescence Polarization , Humans , Kinetics , Lipoproteins, HDL/drug effects , Lipoproteins, HDL/ultrastructure , Phosphatidylcholine-Sterol O-Acyltransferase/drug effects , Phosphatidylcholines/metabolism , Protein Binding , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
5.
J Biol Chem ; 272(50): 31333-9, 1997 Dec 12.
Article in English | MEDLINE | ID: mdl-9395462

ABSTRACT

In this study we examined the effects of apoA-II on the structure and function of apoA-I in homogeneous reconstituted HDL (rHDL). First, we measured the binding of apoA-II to apoA-I-rHDL, containing dipalmitoylphosphatidylcholine or palmitoyloleoylphosphatidylcholine, and the degree of apoA-I displacement at various ratios of apolipoproteins. Using fluorescence methods, we determined that apoA-II binding is rapid, irreversible, and associated with apoA-I displacement only when the molar ratio of apoA-II/apoA-I is greater than 1:2. Next, we used the stable apoA-II/apoA-I-rHDL complex at the apoA-II/apoA-I ratio of 1:2 to examine its physical properties, apoA-I structure, and reactivity with lecithin:cholesterol acyltransferase (LCAT). Using chemical cross-linking in conjunction with fluorescence and electrophoretic methods, we demonstrated that the conformation of apoA-I must be flexible to allow apoA-II binding to the apoA-I-rHDL particles and showed that the hybrid particles have an unchanged Stokes diameter. Fluorescence and circular dichroism measurements revealed little or no change in the secondary structure or in the N-terminal domain of apoA-I, but showed a marked destabilization of apoA-I to denaturation by guanidine hydrochloride. Limited tryptic digestion indicated that the central region of apoA-I becomes accessible to proteolysis in the hybrid particles. Together, these results suggest that amphipathic alpha-helices of apoA-II replace four central helices of one apoA-I molecule (residues approximately 99-187) in the complex and in the process destabilize apoA-I. Thus, apoA-II binding at physiologic ratios may not completely displace apoA-I from HDL, but may provide a reservoir of easily exchangeable apoA-I. Finally, we showed that the reaction of the hybrid HDL with LCAT was inhibited 2-5-fold, relative to apoA-I-rHDL, due to a corresponding increase in the apparent Km value. This suggests that LCAT binding to the hybrid particles is sterically hindered by the excess protein (portions of apoA-I and apoA-II not bound to lipid). Therefore, apoA-II can modulate the reaction of HDL with LCAT by decreasing LCAT binding to hybrid particles and making the enzyme available for reaction with other substrates.


Subject(s)
Apolipoprotein A-II/pharmacology , Apolipoprotein A-I/chemistry , Lipoproteins, HDL/metabolism , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Apolipoprotein A-I/metabolism , Circular Dichroism , Humans , In Vitro Techniques , Lipoproteins, HDL/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL