Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Parasitol Res ; 123(6): 237, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856825

ABSTRACT

Mastophorus muris (Gmelin, 1790) is a globally distributed parasitic nematode of broad range mammals. The taxonomy within the genus Mastophorus and the cryptic diversity among the genus are controversial among taxonomists. This study provides a detailed morphological description of M. muris from Mus musculus combined with a molecular phylogenetic approach. Moreover, descriptions and molecular data of M. muris from non-Mus rodents and wildcats complement our findings and together provide new insights into their taxonomy. The analysis of M. muris was based on light microscopy and scanning electron microscopy. The morphological description focused on the dentition pattern of the two trilobed pseudolabia. Additionally, we described the position of the vulva, arrangement of caudal pairs of papillae, spicules and measured specimens from both sexes and the eggs. For the molecular phylogenetic approach, we amplified the small subunit ribosomal RNA gene and the internal transcribed spacer, and the cytochrome c oxidase subunit 1. Mastophorus morphotypes based on dentition patterns and phylogenetic clustering indicate a subdivision of the genus in agreement with their host. We recognize two groups without a change to formal taxonomy: One group including those specimens infecting Mus musculus, and the second group including organisms infecting non-Mus rodents. Our genetic and morphological data shed light into the cryptic diversity within the genus Mastopohorus. We identified two host-associated groups of M. muris. The described morphotypes and genotypes of M. muris allow a consistent distinction between host-associated parasites.


Subject(s)
Microscopy, Electron, Scanning , Phylogeny , Animals , Female , Male , Mice , Spiruroidea/classification , Spiruroidea/genetics , Spiruroidea/anatomy & histology , Spiruroidea/isolation & purification , Spiruroidea/ultrastructure , Electron Transport Complex IV/genetics , Genetic Variation , Sequence Analysis, DNA , Microscopy , DNA, Helminth/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Cluster Analysis , Molecular Sequence Data
2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38730559

ABSTRACT

The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and cecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/genetics , Mice , Female , RNA, Ribosomal, 16S/genetics , Male , Microsatellite Repeats , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
3.
ISME Commun ; 4(1): ycae053, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38800129

ABSTRACT

Antibiotic resistance is a priority public health problem resulting from eco-evolutionary dynamics within microbial communities and their interaction at a mammalian host interface or geographical scale. The links between mammalian host genetics, bacterial gut community, and antimicrobial resistance gene (ARG) content must be better understood in natural populations inhabiting heterogeneous environments. Hybridization, the interbreeding of genetically divergent populations, influences different components of the gut microbial communities. However, its impact on bacterial traits such as antibiotic resistance is unknown. Here, we present that hybridization might shape bacterial communities and ARG occurrence. We used amplicon sequencing to study the gut microbiome and to predict ARG composition in natural populations of house mice (Mus musculus). We compared gastrointestinal bacterial and ARG diversity, composition, and abundance across a gradient of pure and hybrid genotypes in the European House Mouse Hybrid Zone. We observed an increased overall predicted richness of ARG in hybrid mice. We found bacteria-ARG interactions by their co-abundance and detected phenotypes of extreme abundances in hybrid mice at the level of specific bacterial taxa and ARGs, mainly multidrug resistance genes. Our work suggests that mammalian host genetic variation impacts the gut microbiome and chromosomal ARGs. However, it raises further questions on how the mammalian host genetics impact ARGs via microbiome dynamics or environmental covariates.

4.
FEMS Microbiol Ecol ; 98(8)2022 08 16.
Article in English | MEDLINE | ID: mdl-35767862

ABSTRACT

The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM-host coadaptations and the fitness effects of their interactions.


Subject(s)
Gastrointestinal Microbiome , Animals , Host Microbial Interactions , Mice , RNA, Ribosomal, 16S/genetics
5.
Ecol Evol ; 12(12): e9683, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590341

ABSTRACT

It is widely acknowledged that population structure can have a substantial impact on evolutionary trajectories. In social animals, this structure is strongly influenced by relationships among the population members, so studies of differences in social structure between diverging populations or nascent species are of prime interest. Ideal models for such a study are two house mouse subspecies, Mus musculus musculus and M. m. domesticus, meeting in Europe along a secondary contact zone. Though the latter subspecies has usually been supposed to form tighter and more isolated social units than the former, the evidence is still inconclusive. Here, we carried out a series of radiofrequency identification experiments in semi-natural enclosures to gather large longitudinal data sets on individual mouse movements. The data were summarized in the form of uni- and multi-layer social networks. Within them, we could delimit and describe the social units ("modules"). While the number of estimated units was similar in both subspecies, domesticus revealed a more "modular" structure. This subspecies also showed more intramodular social interactions, higher spatial module separation, higher intramodular persistence of parent-offspring contacts, and lower multiple paternity, suggesting more effective control of dominant males over reproduction. We also demonstrate that long-lasting modules can be identified with basic reproductive units or demes. We thus provide the first robust evidence that the two subspecies differ in their social structure and dynamics of the structure formation.

6.
Heredity (Edinb) ; 127(2): 141-150, 2021 08.
Article in English | MEDLINE | ID: mdl-34045683

ABSTRACT

Data on the gut microbiota (GM) of wild animals are key to studies on evolutionary biology (host-GM interactions under natural selection), ecology and conservation biology (GM as a fitness component closely connected to the environment). Wildlife GM sampling often requires non-invasive techniques or sampling from dead animals. In a controlled experiment profiling microbial 16S rRNA in 52 house mice (Mus musculus) from eight families and four genetic backgrounds, we studied the effects of live- and snap-trapping on small mammal GM and evaluated the suitability of microbiota from non-fresh faeces as a proxy for caecal GM. We compared CM from individuals sampled 16-18 h after death with those in live traps and caged controls, and caecal and faecal GM collected from mice in live-traps. Sampling delay did not affect GM composition, validating data from fresh cadavers or snap-trapped animals. Animals trapped overnight displayed a slight but significant difference in GM composition to the caged controls, though the change only had negligible effect on GM diversity, composition and inter-individual divergence. Hence, the trapping process appears not to bias GM profiling. Despite their significant difference, caecal and faecal microbiota were correlated in composition and, to a lesser extent, diversity. Both showed congruent patterns of inter-individual divergence following the natural structure of the dataset. Thus, the faecal microbiome represents a good non-invasive proxy of the caecal microbiome, making it suitable for detecting biologically relevant patterns. However, care should be taken when analysing mixed datasets containing both faecal and caecal samples.


Subject(s)
Gastrointestinal Microbiome , Animals , Cecum , Feces , Mammals , Mice , RNA, Ribosomal, 16S/genetics
7.
BMC Microbiol ; 20(1): 194, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32631223

ABSTRACT

BACKGROUND: The vertebrate gastrointestinal tract is colonised by microbiota that have a major effect on the host's health, physiology and phenotype. Once introduced into captivity, however, the gut microbial composition of free-living individuals can change dramatically. At present, little is known about gut microbial changes associated with adaptation to a synanthropic lifestyle in commensal species, compared with their non-commensal counterparts. Here, we compare the taxonomic composition and diversity of bacterial and fungal communities across three gut sections in synanthropic house mouse (Mus musculus) and a closely related non-synanthropic mound-building mouse (Mus spicilegus). RESULTS: Using Illumina sequencing of bacterial 16S rRNA amplicons, we found higher bacterial diversity in M. spicilegus and detected 11 bacterial operational taxonomic units with significantly different proportions. Notably, abundance of Oscillospira, which is typically higher in lean or outdoor pasturing animals, was more abundant in non-commensal M. spicilegus. ITS2-based barcoding revealed low diversity and high uniformity of gut fungi in both species, with the genus Kazachstania clearly dominant. CONCLUSIONS: Though differences in gut bacteria observed in the two species can be associated with their close association with humans, changes due to a move from commensalism to captivity would appear to have caused larger shifts in microbiota.


Subject(s)
Bacteria/classification , Fungi/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Ribosomal/genetics , Ecology , Feces/microbiology , Fungi/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Mice , Microbiota , Mycobiome , Phylogeny
8.
Vector Borne Zoonotic Dis ; 20(9): 692-702, 2020 09.
Article in English | MEDLINE | ID: mdl-32487013

ABSTRACT

Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.


Subject(s)
Parechovirus/isolation & purification , Picornaviridae Infections/veterinary , Animals , Body Weight , Eulipotyphla , Europe/epidemiology , Parechovirus/classification , Parechovirus/genetics , Phylogeny , Picornaviridae Infections/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Rodentia , Seasons
9.
Heredity (Edinb) ; 125(4): 200-211, 2020 10.
Article in English | MEDLINE | ID: mdl-32528080

ABSTRACT

The widespread and locally massive introgression of Y chromosomes of the eastern house mouse (Mus musculus musculus) into the range of the western subspecies (M. m. domesticus) in Central Europe calls for an explanation of its underlying mechanisms. Given the paternal inheritance pattern, obvious candidates for traits mediating the introgression are characters associated with sperm quantity and quality. We can also expect traits such as size, aggression or the length of generation cycles to facilitate the spread. We have created two consomic strains carrying the non-recombining region of the Y chromosome of the opposite subspecies, allowing us to study introgression in both directions, something impossible in nature due to the unidirectionality of introgression. We analyzed several traits potentially related to male fitness. Transmission of the domesticus Y onto the musculus background had negative effects on all studied traits. Likewise, domesticus males possessing the musculus Y had, on average, smaller body and testes and lower sperm count than the parental strain. However, the same consomic males tended to produce less- dissociated sperm heads, to win more dyadic encounters, and to have shorter generation cycles than pure domesticus males. These data suggest that the domesticus Y is disadvantageous on the musculus background, while introgression in the opposite direction can confer a recognizable, though not always significant, selective advantage. Our results are thus congruent with the unidirectional musculus → domesticus Y chromosome introgression in Central Europe. In addition to some previous studies, they show this to be a multifaceted phenomenon demanding a multidisciplinary approach.


Subject(s)
Aggression , Mice/genetics , Spermatozoa/physiology , Y Chromosome , Animals , Europe , Female , Male , Phenotype , Y Chromosome/genetics
10.
Ecol Evol ; 10(24): 13938-13948, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391692

ABSTRACT

Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species. We tested this in experimental infections with two parasite species of the genus Eimeria. We measured proxies for resistance (the (inverse of) number of parasite transmission stages (oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of maximum relative weight loss compared to day of infection on number of oocysts per gram of feces at the day of maximal shedding for each host strain) in four inbred mouse strains and four groups of F1 hybrids belonging to two mouse subspecies, Mus musculus domesticus and Mus musculus musculus. We found a negative correlation between resistance and tolerance against Eimeria falciformis, while the two are uncoupled against Eimeria ferrisi. We conclude that resistance and tolerance against the first parasite species might be traded off, but evolve more independently in different mouse genotypes against the latter. We argue that evolution of the host immune defenses can be studied largely irrespective of parasite isolates if resistance-tolerance coupling is absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and best studied in a system with negatively correlated tolerance and resistance (E. falciformis).

11.
J Evol Biol ; 33(4): 435-448, 2020 04.
Article in English | MEDLINE | ID: mdl-31834960

ABSTRACT

Genetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies. Working across a novel transect, we assessed infections by intracellular protozoans, Eimeria spp., and infections by extracellular macroparasites, pinworms. For Eimeria, we found lower intensities in hybrid hosts than in parental mice but no evidence of lowered probability of infection or increased mortality in the centre of the hybrid zone. This means ecological factors are very unlikely to be responsible for the reduced load of infected hybrids. Focusing on parasite intensity (load in infected hosts), we also corroborated reduced pinworm loads reported for hybrid mice in previous studies. We conclude that intensity of diverse parasites, including the previously unstudied Eimeria, is reduced in hybrid mice compared to parental subspecies. We suggest caution in extrapolating this to differences in hybrid host fitness in the absence of, for example, evidence for a link between parasitemia and health.


Subject(s)
Coccidiosis/veterinary , Eimeria/physiology , Host-Parasite Interactions/genetics , Hybridization, Genetic , Mice/parasitology , Animals , Coccidiosis/mortality , Female , Male , Mice/genetics , Parasite Load
12.
Ecol Evol ; 9(10): 6124-6137, 2019 May.
Article in English | MEDLINE | ID: mdl-31161024

ABSTRACT

Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild-derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y-linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.

13.
PLoS One ; 9(12): e115669, 2014.
Article in English | MEDLINE | ID: mdl-25541964

ABSTRACT

Being subject to intense post-copulatory selection, sperm size is a principal determining component of male fitness. Although previous studies have presented comparative sperm size data at higher taxonomic levels, information on the evolution of sperm size within species is generally lacking. Here, we studied two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus, which undergo incipient speciation. We measured four sperm dimensions from cauda epididymis smears of 28 wild-caught mice of both subspecies. As inbred mouse strains are frequently used as proxies for exploring evolutionary processes, we further studied four wild-derived inbred strains from each subspecies. The subspecies differed significantly in terms of sperm head length and midpiece length, and these differences were consistent for wild mice and wild-derived strains pooled over genomes. When the inbred strains were analyzed individually, however, their strain-specific values were in some cases significantly shifted from subspecies-specific values derived from wild mice. We conclude that: (1) the size of sperm components differ in the two house mouse subspecies studied, and that (2) wild-derived strains reflect this natural polymorphism, serving as a potential tool to identify the genetic variation driving these evolutionary processes. Nevertheless, we suggest that more strains should be used in future experiments to account for natural variation and to avoid confounding results due to reduced variability and/or founder effect in the individual strains.


Subject(s)
Genetic Speciation , Spermatozoa/cytology , Animals , Genetic Variation , Male , Mice , Mice, Inbred Strains
14.
Aggress Behav ; 37(1): 48-55, 2011.
Article in English | MEDLINE | ID: mdl-20954263

ABSTRACT

Male aggressiveness is a complex behavior influenced by a number of genetic and non-genetic factors. Traditionally, the contribution of each of these factors has been established from experiments using artificially selected strains for high/low aggressive phenotypes. However, little is known about the factors underlying aggressive behavior in natural populations. In this study, we assess the influence of genetic background vs. postnatal maternal environment using a set of cross-fostering experiments between two wild-derived inbred strains, displaying high (STRA, derived from Mus musculus domesticus) and low (BUSNA, derived from Mus musculus musculus) levels of aggressiveness. The role of maternal environment was tested in males with the same genetic background (i.e. strain origin) reared under three different conditions: unfostered (weaned by mother), infostered (weaned by an unfamiliar dam from the same strain), and cross-fostered (weaned by a dam from a different strain). All males were tested against non-aggressive opponents from the A/J inbred strain. Resource-holding potential was assessed through body weight gains and territory ownership. The STRA males were shown to be aggressive in both neutral cage and resident-intruder tests. On the contrary, the BUSNA males were less aggressive in all tests. We did not find a significant effect of postnatal maternal environment; however, we detected significant maternal effect on body weight with differences between the strains, fostering type and interactions between these factors. We conclude that the aggressiveness preserved in the two strains has significant genetic component whose genetic basis can be dissected by quantitative trait loci analysis.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Maternal Behavior/physiology , Analysis of Variance , Animals , Animals, Wild , Dominance-Subordination , Female , Male , Mice , Species Specificity
15.
J Hered ; 99(1): 34-44, 2008.
Article in English | MEDLINE | ID: mdl-17965200

ABSTRACT

Two house mouse subspecies, Mus musculus domesticus and Mus musculus musculus, form a hybrid zone in Europe and represent a suitable model for inferring the genes contributing to isolation barriers between parental taxa. Despite long-term intensive studies of this hybrid zone, we still know relatively little about the causes and mechanisms maintaining the 2 taxa as separate subspecies; therefore, to gain insight into this process, we developed 8 wild-derived inbred house mouse strains. In order to produce strains as pure domesticus or musculus genomes as possible, the individuals used to establish the breeding colony for the 3 domesticus and 2 of the musculus strains were captured in the Czech Republic from wild populations at extreme western and eastern edges of the subspecific contact zone, respectively. The remaining 3 musculus strains were bred from mice captured about 250 km east of the hybrid zone. Genetic analysis based on 361 microsatellite loci showed that 82% of these markers are diagnostic for either the musculus or the domesticus strains. In order to demonstrate the potential utility of this genetic differentiation in such strains, phenotypic variation was scored for 2 strains from opposite edges of the hybrid zone and significant differences in morphology, reproductive performance, in vitro immune responses, mate choice based on urinary signals, and aggressiveness were found. In addition, the 3 strains derived from musculus populations far from the hybrid zone display significant differences in polymorphism in hybrid male sterility when crossed with the laboratory strains C57BL/6 or C57BL/10, which have a predominantly domesticus genome. Although further studies will be necessary to demonstrate intersubspecific differences, all analyses presented here indicate that these newly developed house mouse strains represent a powerful tool for elucidating the genetic basis of isolation barriers in hybrid zones and for studying speciation in general.


Subject(s)
Genetic Speciation , Animals , Female , Genetics, Population , Genome , Male , Mice , Mice, Inbred A , Mice, Inbred C57BL , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...