Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
2.
J Am Heart Assoc ; 12(11): e029218, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37260032

ABSTRACT

Background Obstructive sleep apnea (OSA) is an independent risk factor for the development of hypertension. We have demonstrated that OSA induces gut dysbiosis, and this dysbiotic microbiota contributes to hypertension. However, the mechanisms linking gut dysbiosis to blood pressure regulation remain unclear. Recent studies demonstrate that gut dysbiosis can induce a proinflammatory response of the host resulting in peripheral and neuroinflammation, key factors in the development of hypertension. We hypothesized that OSA induces inflammation in the gut that contributes to neuroinflammation and hypertension. Methods and Results OSA was induced in 8-week-old male rats. After 2 weeks of apneas, lymphocytes were isolated from aorta, brain, cecum, ileum, mesenteric lymph node, and spleen for flow cytometry. To examine the role of interleukin-17a, a monoclonal antibody was administered to neutralize interleukin-17a. Lymphocytes originating from the gut were tracked by labeling with carboxyfluorescein succinimidyl ester dye. OSA led to a significant decrease in T regulatory cells along with an increase in T helper (TH) 17 cells in the ileum, cecum, and brain. Interleukin-17a neutralization significantly reduced blood pressure, increased T regulatory cells, and decreased TH1 cells in the ileum, cecum, and brain of OSA rats. TH1, TH2, and TH17 cells from the gut were found to migrate to the mesenteric lymph node, spleen, and brain with increased frequency in rats with OSA. Conclusions OSA induces a proinflammatory response in the gut and brain that involves interleukin-17a signaling. Gut dysbiosis may serve as the trigger for gut and neuroinflammation, and treatments to prevent or reverse gut dysbiosis may prove useful in reducing neuroinflammation and hypertension.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Sleep Apnea, Obstructive , Rats , Male , Animals , Interleukin-17 , Neuroinflammatory Diseases , Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Sleep Apnea, Obstructive/complications
4.
Camb Prism Precis Med ; 1: e26, 2023.
Article in English | MEDLINE | ID: mdl-38550938

ABSTRACT

The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.

5.
Sci Rep ; 12(1): 8534, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595870

ABSTRACT

Gut dysbiosis, a pathological imbalance of bacteria, has been shown to contribute to the development of hypertension (HT), systemic- and neuro-inflammation, and blood-brain barrier (BBB) disruption in spontaneously hypertensive stroke prone rats (SHRSP). However, to date individual species that contribute to HT in the SHRSP model have not been identified. One potential reason, is that nearly all studies of the SHRSP gut microbiota have analyzed samples from rats with established HT. The goal of this study was to examine the SHRSP gut microbiota before, during, and after the onset of hypertension, and in normotensive WKY control rats over the same age range. We hypothesized that we could identify key microbes involved in the development of HT by comparing WKY and SHRSP microbiota during the pre-hypertensive state and longitudinally. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and fecal microbiota analyzed by16S rRNA gene sequencing. SHRSP showed significant elevations in SBP, as compared to WKY, beginning at 8 weeks of age (p < 0.05 at each time point). Bacterial community structure was significantly different between WKY and SHRSP as early as 4 weeks of age, and remained different throughout the study (p = 0.001-0.01). At the phylum level we observed significantly reduced Firmicutes and Deferribacterota, and elevated Bacteroidota, Verrucomicrobiota, and Proteobacteria, in pre-hypertensive SHRSP, as compared to WKY. At the genus level we identified 18 bacteria whose relative abundance was significantly different in SHRSP versus WKY at the pre-hypertensive ages of 4 or 6 weeks. In an attempt to further refine bacterial candidates that might contribute to the SHRSP phenotype, we compared the functional capacity of WKY versus SHRSP microbial communities. We identified significant differences in amino acid metabolism. Using untargeted metabolomics we found significant reductions in metabolites of the tryptophan-kynurenine pathway and increased indole metabolites in SHRSP versus WKY plasma. Overall, we provide further evidence that gut dysbiosis contributes to hypertension in the SHRSP model, and suggest for the first time the potential involvement of tryptophan metabolizing microbes.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Stroke , Aging , Animals , Blood Pressure/physiology , Dysbiosis , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Tryptophan
8.
FASEB J ; 35(2): e21201, 2021 02.
Article in English | MEDLINE | ID: mdl-33496989

ABSTRACT

In recent years, it has become apparent that the gut microbiome can influence the functioning and pathological states of organs and systems throughout the body. In this study, we tested the hypothesis that the gut microbiome has a major role in the disruption of the blood-brain barrier (BBB) in the spontaneously hypertensive stroke prone rats (SHRSP), an animal model for hypertensive cerebral small vessel disease (CSVD). Loss of BBB is thought to be an early and initiating component to the full expression of CSVD in animal models and humans. To test this hypothesis, newly born SHRSP pups were placed with foster dams of the SHRSP strain or dams of the WKY strain, the control strain that does not demonstrate BBB dysfunction or develop hypertensive CSVD. Similarly, WKY pups were placed with foster dams of the same or opposite strain. The rationale for cross fostering is that the gut microbiomes are shaped by environmental bacteria of the foster dam and the nesting surroundings. Analysis of the bacterial genera in feces, using 16S rRNA analysis, demonstrated that the gut microbiome in the rat pups was influenced by the foster dam. SHRSP offspring fostered on WKY dams had systolic blood pressures (SBPs) that were significantly decreased by 26 mmHg (P < .001) from 16-20 weeks, compared to SHRSP offspring fostered on SHRSP dams. Similarly WKY offspring fostered on SHRSP dams had significantly increased SBP compared to WKY offspring fostered on WKY dams, although the magnitude of SBP change was not as robust. At ~20 weeks of age, rats fostered on SHRSP dams showed enhanced inflammation in distal ileum regardless of the strain of the offspring. Disruption of BBB integrity, an early marker of CSVD onset, was improved in SHRSPs that were fostered on WKY dams when compared to the SHRSP rats fostered on SHRSP dams. Although SHRSP is a genetic model for CSVD, environmental factors such as the gut microbiota of the foster dam have a major influence in the loss of BBB integrity.


Subject(s)
Blood Pressure , Blood-Brain Barrier/pathology , Gastrointestinal Microbiome , Animals , Blood-Brain Barrier/metabolism , Environment , Ileum/microbiology , Ileum/pathology , Rats, Inbred SHR , Rats, Inbred WKY
9.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32897773

ABSTRACT

Aging is associated with cognitive decline and decreased concentrations of short-chain fatty acids (SCFAs) in the gut. SCFAs are significant in that they are protective to the gut and other organs. We tested the hypothesis that the aged gut microbiome alone is sufficient to decrease SCFAs in the host and produce cognitive decline. Fecal transplant gavages (FTGs) from aged (18-20 months) or young (2-3 months) male C57BL/6 mice into germ-free male C57BL/6 mice (N = 11 per group) were initiated at ~3 months of age. Fecal samples were collected and behavioral testing was performed over the study period. Bacterial community structures and relative abundances were measured in fecal samples by sequencing the bacterial 16S ribosomal RNA gene. Mice with aged and young microbiomes showed clear differences in bacterial ß diversity at 30, 60, and 90 d (P = .001 for each) after FTGs. The fecal SCFAs, acetate, propionate, and butyrate (microbiome effect, P < .01 for each) were decreased in mice with an aged microbiome. Mice with an aged microbiome demonstrated depressive-like behavior, impaired short-term memory, and impaired spatial memory over the 3 months following the initial FTG as assessed by the tail suspension (P = .008), the novel object recognition (P < .001), and the Barnes Maze (P = .030) tests, respectively. We conclude that an aged microbiome alone is sufficient to decrease SCFAs in the host and to produce cognitive decline.


Subject(s)
Aging , Cognition , Cognitive Dysfunction/therapy , Fatty Acids, Volatile/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Brain/immunology , Cognitive Dysfunction/etiology , Cytokines/blood , Depression , Fatty Acids, Volatile/analysis , Feces/chemistry , Feces/microbiology , Germ-Free Life , Leukocytes/immunology , Male , Memory , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology
10.
Circ Res ; 127(4): 453-465, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32354259

ABSTRACT

RATIONALE: The elderly experience profound systemic responses after stroke, which contribute to higher mortality and more severe long-term disability. Recent studies have revealed that stroke outcomes can be influenced by the composition of gut microbiome. However, the potential benefits of manipulating the gut microbiome after injury is unknown. OBJECTIVE: To determine if restoring youthful gut microbiota after stroke aids in recovery in aged subjects, we altered the gut microbiome through young fecal transplant gavage in aged mice after experimental stroke. Further, the effect of direct enrichment of selective bacteria producing short-chain fatty acids (SCFAs) was tested as a more targeted and refined microbiome therapy. METHODS AND RESULTS: Aged male mice (18-20 months) were subjected to ischemic stroke by middle cerebral artery occlusion. We performed fecal transplant gavage 3 days after middle cerebral artery occlusion using young donor biome (2-3 months) or aged biome (18-20 months). At day 14 after stroke, aged stroke mice receiving young fecal transplant gavage had less behavioral impairment, and reduced brain and gut inflammation. Based on data from microbial sequencing and metabolomics analysis demonstrating that young fecal transplants contained much higher SCFA levels and related bacterial strains, we selected 4 SCFA-producers (Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and Lactobacillus fermentum) for transplantation. These SCFA-producers alleviated poststroke neurological deficits and inflammation, and elevated gut, brain and plasma SCFA concentrations in aged stroke mice. CONCLUSIONS: This is the first study suggesting that the poor stroke recovery in aged mice can be reversed via poststroke bacteriotherapy following the replenishment of youthful gut microbiome via modulation of immunologic, microbial, and metabolomic profiles in the host.


Subject(s)
Fatty Acids, Volatile/biosynthesis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Infarction, Middle Cerebral Artery/therapy , Ischemic Stroke/therapy , Age Factors , Animals , Bifidobacterium longum/metabolism , Brain Chemistry , Clostridium symbiosum/metabolism , Faecalibacterium prausnitzii/metabolism , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/blood , Feces/chemistry , Interleukin-17/biosynthesis , Intestines/chemistry , Intraepithelial Lymphocytes/physiology , Limosilactobacillus fermentum/metabolism , Male , Mice , Mucin-2/metabolism , Mucin-4/metabolism , T-Lymphocytes, Regulatory/physiology
13.
Hypertension ; 72(5): 1141-1150, 2018 11.
Article in English | MEDLINE | ID: mdl-30354816

ABSTRACT

Disruption of the gut microbiota, termed gut dysbiosis, has been described in animal models of hypertension and hypertensive patients. We have shown that gut dysbiosis plays a causal role in the development of hypertension in a rat model of obstructive sleep apnea (OSA). Functional analysis of the dysbiotic microbiota in OSA demonstrates a loss of short chain fatty acid-producing bacteria. However, measurements of short chain fatty acid concentrations and testing of their role in blood pressure regulation are lacking. We hypothesized that reduced short chain fatty acids in the gut are responsible for OSA-induced hypertension. OSA significantly increased systolic blood pressure at 7 and 14 days ( P<0.05), an effect that was abolished by the probiotic Clostridium butyricum or the prebiotic Hylon VII. The 16S rRNA analysis identified several short chain fatty acid-producing bacteria that were significantly increased by Cbutyricum and Hylon treatment. Acetate concentration in the cecum was decreased by 48% after OSA ( P<0.05), an effect that was prevented by Cbutyricum and Hylon. Cbutyricum and Hylon reduced OSA-induced dysbiosis, epithelial goblet cell loss, mucus barrier thinning, and activation of brain microglia ( P<0.05 for each). To examine the role of acetate in OSA-induced hypertension, we chronically infused acetate into the cecum during 2 weeks of sham or OSA. Restoring cecal acetate concentration prevented OSA-induced gut inflammation and hypertension ( P<0.05). These studies identify acetate as a key player in OSA-induced hypertension. We demonstrate that various methods to increase cecal acetate concentrations are protective from the adverse effects of OSA on the microbiota, gut, brain, and blood pressure.


Subject(s)
Acetates/therapeutic use , Hypertension/prevention & control , Prebiotics , Probiotics , Sleep Apnea, Obstructive/complications , Animals , Blood Pressure/physiology , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Hypertension/complications , Male , Rats , Rats, Long-Evans
14.
Ann Neurol ; 84(1): 23-36, 2018 07.
Article in English | MEDLINE | ID: mdl-29733457

ABSTRACT

OBJECTIVE: Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. METHODS: Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. RESULTS: We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. INTERPRETATION: Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. Ann Neurol 2018;83:23-36.


Subject(s)
Aging , Gastrointestinal Microbiome , Inflammation/microbiology , Stroke/microbiology , Age Factors , Animals , Cytokines/metabolism , Disease Models, Animal , Exploratory Behavior , Fecal Microbiota Transplantation/methods , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Muscle Strength/physiology , Neurologic Examination , RNA, Ribosomal, 16S/metabolism , Stroke/physiopathology
15.
Curr Hypertens Rep ; 19(4): 35, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28365886

ABSTRACT

PURPOSE OF REVIEW: Obstructive sleep apnea (OSA) is a significant risk factor for systemic hypertension and other cardiovascular diseases. While this relationship has been firmly established, a detailed understanding of how OSA leads to hypertension is lacking. This review will examine the emerging idea that the gut microbiota plays a role in the development of hypertension, including that associated with OSA. RECENT FINDINGS: Disruption of the normal composition of the gut microbiota, termed dysbiosis, has been identified in a number of metabolic and cardiovascular diseases, including diabetes, obesity, and atherosclerosis. Recently, a number of studies have demonstrated gut dysbiosis in various animal models of hypertension as well as in hypertensive patients. Evidence is now emerging that gut dysbiosis plays a causal role in the development of OSA-induced hypertension. In this review, we will examine the evidence that gut dysbiosis plays a role in OSA-induced hypertension. We will discuss potential mechanisms linking OSA to gut dysbiosis, examine how gut dysbiosis may be linked to hypertension, and highlight how this understanding may be utilized for the development of future therapeutics.


Subject(s)
Gastrointestinal Microbiome , Hypertension/microbiology , Sleep Apnea, Obstructive/etiology , Animals , Dysbiosis , Humans , Hypertension/physiopathology , Obesity/complications , Risk Factors
16.
Physiol Genomics ; 49(2): 96-104, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28011881

ABSTRACT

Gut dysbiosis has been linked to cardiovascular diseases including hypertension. We tested the hypothesis that hypertension could be induced in a normotensive strain of rats or attenuated in a hypertensive strain of rats by exchanging the gut microbiota between the two strains. Cecal contents from spontaneously hypertensive stroke prone rats (SHRSP) were pooled. Similarly, cecal contents from normotensive WKY rats were pooled. Four-week-old recipient WKY and SHR rats, previously treated with antibiotics to reduce the native microbiota, were gavaged with WKY or SHRSP microbiota, resulting in four groups; WKY with WKY microbiota (WKY g-WKY), WKY with SHRSP microbiota (WKY g-SHRSP), SHR with SHRSP microbiota (SHR g-SHRSP), and SHR with WKY microbiota (SHR g-WKY). Systolic blood pressure (SBP) was measured weekly using tail-cuff plethysmography. At 11.5 wk of age systolic blood pressure increased 26 mmHg in WKY g-SHRSP compared with that in WKY g-WKY (182 ± 8 vs. 156 ± 8 mmHg, P = 0.02). Although the SBP in SHR g-WKY tended to decrease compared with SHR g-SHRSP, the differences were not statistically significant. Fecal pellets were collected at 11.5 wk of age for identification of the microbiota by sequencing the 16S ribosomal RNA gene. We observed a significant increase in the Firmicutes:Bacteroidetes ratio in the hypertensive WKY g-SHRSP, as compared with the normotensive WKY g-WKY (P = 0.042). Relative abundance of multiple taxa correlated with SBP. We conclude that gut dysbiosis can directly affect SBP. Manipulation of the gut microbiota may represent an innovative treatment for hypertension.


Subject(s)
Gastrointestinal Microbiome , Hypertension/microbiology , Animals , Biodiversity , Blood Pressure , Feces/microbiology , Hypertension/physiopathology , Metabolome , Phylogeny , Rats, Inbred SHR , Rats, Inbred WKY , Systole
17.
J Cereb Blood Flow Metab ; 37(8): 2806-2819, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27798273

ABSTRACT

Circadian clock components oscillate in cells of the cardiovascular system. Disruption of these oscillations has been observed in cardiovascular diseases. We hypothesized that obstructive sleep apnea, which is associated with cerebrovascular diseases, disrupts the cerebrovascular circadian clock and rhythms in vascular function. Apneas were produced in rats during sleep. Following two weeks of sham or obstructive sleep apnea, cerebral arteries were isolated over 24 h for mRNA and functional analysis. mRNA expression of clock genes exhibited 24-h rhythms in cerebral arteries of sham rats (p < 0.05). Interestingly, peak expression of clock genes was significantly lower following obstructive sleep apnea (p < 0.05). Obstructive sleep apnea did not alter clock genes in the heart, or rhythms in locomotor activity. Isolated posterior cerebral arteries from sham rats exhibited a diurnal rhythm in sensitivity to luminally applied ATP, being most responsive at the beginning of the active phase (p < 0.05). This rhythm was absent in arteries from obstructive sleep apnea rats (p < 0.05). Rhythms in ATP sensitivity in sham vessels were absent, and not different from obstructive sleep apnea, following treatment with L-NAME and indomethacin. We conclude that cerebral arteries possess a functional circadian clock and exhibit a diurnal rhythm in vasoreactivity to ATP. Obstructive sleep apnea attenuates these rhythms in cerebral arteries, potentially contributing to obstructive sleep apnea-associated cerebrovascular disease.


Subject(s)
Cerebral Arteries/physiopathology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Period Circadian Proteins/genetics , Sleep Apnea, Obstructive/physiopathology , Animals , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/physiopathology , Circadian Clocks/genetics , Circadian Rhythm/genetics , Disease Models, Animal , Rats, Long-Evans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Vasodilation/physiology
18.
Hypertension ; 67(2): 469-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26711739

ABSTRACT

Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10-s inflations, 60 per hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high-fat diet, blood pressure increased 24 and 29 mm Hg after 7 and 14 days of OSA, respectively (P<0.05 each). Bacterial community characterization was performed on fecal pellets isolated before and after 14 days of OSA in chow and high-fat fed rats. High-fat diet and OSA led to significant alterations of the gut microbiota, including decreases in bacterial taxa known to produce the short chain fatty acid butyrate (P<0.05). Finally, transplant of dysbiotic cecal contents from hypertensive OSA rats on high-fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32 mm Hg after 7 and 14 days of OSA, respectively; P<0.05). These studies demonstrate a causal relationship between gut dysbiosis and hypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension.


Subject(s)
Blood Pressure/physiology , Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Hypertension/etiology , Sleep Apnea Syndromes/complications , Sleep/physiology , Animals , Disease Models, Animal , Dysbiosis/microbiology , Hypertension/physiopathology , Male , Polysomnography , Rats , Rats, Long-Evans , Sleep Apnea Syndromes/microbiology , Sleep Apnea Syndromes/physiopathology
19.
Hypertension ; 66(4): 913-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26259594

ABSTRACT

We tested the hypothesis that apneas during the sleep cycle exacerbate hypertension and accelerate changes that occur with cerebral small vessel disease. Obstructive sleep apnea was modeled by intermittent inflations of a chronically implanted tracheal balloon to occlude the airway during the sleep cycle (termed OSA) in spontaneously hypertensive stroke-prone (SHRSP) rats, a model of cerebral small vessel disease. SHRSP rats and their parent strain, Wistar Kyoto (WKY) rats, were exposed to OSA for 2 weeks (from 9 to 11 or from 18 to 20 weeks). At 9 weeks, hypertension was developing in the SHRSP rats and was firmly established by 18 weeks. OSA exposure increased systolic blood pressure in SHRSP rats by ≈30 mm Hg in both age groups compared with shams that were surgically prepared but not exposed to OSA (P<0.05). OSA exposure also increased systolic blood pressure in WKY rats by 20 and 37 mm Hg at 11 and 20 weeks, respectively (P<0.05). OSA exposure in SHRSP rats compromised blood-brain barrier integrity in white matter at both 11 and 20 weeks of age when compared with SHRSP sham rats (P<0.05). Microglia were activated in SHRSP rats exposed to OSA but not in sham rats at 11 weeks (P<0.05). At 20 weeks, microglia were activated in sham SHRSP rats (P<0.05) compared with WKY sham rats and were not further activated by OSA. Neither was blood-brain barrier integrity altered nor microglia activated in any of the WKY groups. We conclude that OSA accelerates the onset of the cerebral pathologies associated with cerebral small vessel disease in SHRSP, but not WKY, rats.


Subject(s)
Cerebral Small Vessel Diseases/pathology , Sleep Apnea, Obstructive/complications , Sleep , White Matter/pathology , Animals , Cerebral Small Vessel Diseases/etiology , Cerebral Small Vessel Diseases/physiopathology , Disease Models, Animal , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sleep Apnea, Obstructive/physiopathology
20.
J Cereb Blood Flow Metab ; 35(3): 402-11, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25425077

ABSTRACT

Obstructive sleep apnea (OSA) is associated with cerebrovascular diseases. However, little is known regarding the effects of OSA on the cerebrovascular wall. We tested the hypothesis that OSA augments endothelin-1 (ET-1) constrictions of cerebral arteries. Repeated apneas (30 or 60 per hour) were produced in rats during the sleep cycle (8 hours) by remotely inflating a balloon implanted in the trachea. Four weeks of apneas produced a 23-fold increase in ET-1 sensitivity in isolated and pressurized posterior cerebral arteries (PCAs) compared with PCAs from sham-operated rats (EC50=10(-9.2) mol/L versus 10(-10.6) mol/L; P<0.001). This increased sensitivity was abolished by the ET-B receptor antagonist, BQ-788. Constrictions to the ET-B receptor agonist, IRL-1620, were greater in PCAs from rats after 2 or 4 weeks of apneas compared with that from sham-operated rats (P=0.013). Increased IRL-1620 constrictions in PCAs from OSA rats were normalized with the transient receptor potential channel (TRPC) blocker, SKF96365, or the Rho kinase (ROCK) inhibitor, Y27632. These data show that OSA increases the sensitivity of PCAs to ET-1 through enhanced ET-B activity, and enhanced activity of TRPCs and ROCK. We conclude that enhanced ET-1 signaling is part of a pathologic mechanism associated with adverse cerebrovascular outcomes of OSA.


Subject(s)
Cerebrovascular Circulation/physiology , Endothelin-1/metabolism , Receptors, Endothelin/metabolism , Signal Transduction/physiology , Sleep Apnea, Obstructive/metabolism , Animals , Blotting, Western , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Rats , Real-Time Polymerase Chain Reaction , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...