Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446032

ABSTRACT

Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.


Subject(s)
Focal Adhesions , Golgi Apparatus , Humans , Caco-2 Cells , Actin Cytoskeleton , Cell Movement , Vesicular Transport Proteins
2.
Nat Commun ; 15(1): 2235, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472173

ABSTRACT

Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.


Subject(s)
Parasites , Theileria , Theileriasis , Animals , Cattle , Theileria/genetics , Theileriasis/parasitology , Host-Parasite Interactions/physiology , Signal Transduction
3.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38497788

ABSTRACT

Actin filament turnover plays a central role in shaping actin networks, yet the feedback mechanism between network architecture and filament assembly dynamics remains unclear. The activity of ADF/cofilin, the main protein family responsible for filament disassembly, has been mainly studied at the single filament level. This study unveils that fascin, by crosslinking filaments into bundles, strongly slows down filament disassembly by cofilin. We show that this is due to a markedly slower initiation of the first cofilin clusters, which occurs up to 100-fold slower on large bundles compared with single filaments. In contrast, severing at cofilin cluster boundaries is unaffected by fascin bundling. After the formation of an initial cofilin cluster on a filament within a bundle, we observed the local removal of fascin. Notably, the formation of cofilin clusters on adjacent filaments is highly enhanced, locally. We propose that this interfilament cooperativity arises from the local propagation of the cofilin-induced change in helicity from one filament to the other filaments of the bundle. Overall, taking into account all the above reactions, we reveal that fascin crosslinking slows down the disassembly of actin filaments by cofilin. These findings highlight the important role played by crosslinkers in tuning actin network turnover by modulating the activity of other regulatory proteins.


Subject(s)
Actin Depolymerizing Factors , Actins , Carrier Proteins , Microfilament Proteins , Actin Cytoskeleton , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Cytoskeleton , Microfilament Proteins/metabolism , Humans , Animals
4.
PLoS Biol ; 21(1): e3001981, 2023 01.
Article in English | MEDLINE | ID: mdl-36649360

ABSTRACT

Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.


Subject(s)
Aspergillus nidulans , Hyphae , Secretory Vesicles/metabolism , Aspergillus nidulans/metabolism , Cell Wall
5.
Front Oncol ; 12: 958155, 2022.
Article in English | MEDLINE | ID: mdl-36387192

ABSTRACT

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

6.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35319462

ABSTRACT

Centrioles are formed by microtubule triplets in a ninefold symmetric arrangement. In flagellated protists and animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn.' Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly, and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.


Subject(s)
Cell Cycle Proteins , Centrioles , Ciliopathies , Microtubule-Associated Proteins , Animals , Cell Cycle Proteins/genetics , Centrioles/metabolism , Centrosome/metabolism , Cilia/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubules/metabolism
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169074

ABSTRACT

Cells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics, and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division, remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original positions. These forces are independent of cytoskeletal force generators yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.


Subject(s)
Cytoplasm/physiology , Elasticity/physiology , Spindle Apparatus/physiology , Animals , Biomechanical Phenomena/physiology , Cell Division/physiology , Diffusion , Kinetics , Magnetic Phenomena , Microtubules , Mitosis/physiology , Organelles , Sea Urchins , Viscosity
8.
Front Cell Dev Biol ; 9: 719582, 2021.
Article in English | MEDLINE | ID: mdl-34476234

ABSTRACT

In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.

9.
Toxins (Basel) ; 12(5)2020 05 11.
Article in English | MEDLINE | ID: mdl-32403276

ABSTRACT

Shiga toxins (Stxs) expressed by the enterohaemorrhagic Escherichia coli and enteric Shigella dysenteriae 1 pathogens are protein synthesis inhibitors. Stxs have been shown to induce apoptosis via the activation of extrinsic and intrinsic pathways in many cell types (epithelial, endothelial, and B cells) but the link between the protein synthesis inhibition and caspase activation is still unclear. Endoplasmic reticulum (ER) stress induced by the inhibition of protein synthesis may be this missing link. Here, we show that the treatment of Burkitt lymphoma (BL) cells with verotoxin-1 (VT-1 or Stx1) consistently induced the ER stress response by activation of IRE1 and ATF6-two ER stress sensors-followed by increased expression of the transcription factor C/REB homologous protein (CHOP). However, our data suggest that, although ER stress is systematically induced by VT-1 in BL cells, its role in cell death appears to be cell specific and can be the opposite: ER stress may enhance VT-1-induced apoptosis through CHOP or play a protective role through ER-phagy, depending on the cell line. Several engineered Stxs are currently under investigation as potential anti-cancer agents. Our results suggest that a better understanding of the signaling pathways induced by Stxs is needed before using them in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Burkitt Lymphoma/drug therapy , Endoplasmic Reticulum Stress/drug effects , Shiga Toxin 1/pharmacology , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
10.
Int J Pharm ; 532(2): 748-756, 2017 Nov 05.
Article in English | MEDLINE | ID: mdl-28546071

ABSTRACT

Oxazaphosphorines including cyclophosphamide, trofosfamide and ifosfamide (IFO) belong to the alkylating agent class and are indicated in the treatment of numerous cancers. However, IFO is subject to limiting side-effects in high-dose protocols. To circumvent IFO drawbacks in clinical practices, preactivated IFO analogs were designed to by-pass the toxic metabolic pathway. Among these IFO analogs, some of them showed the ability to self-assemble due to the use of a poly-isoprenyloxy chain as preactivating moiety. We present here, the in vitro activity of the nanoassembly formulations of preactivated IFO derivatives with a C-4 geranyloxy, farnesyloxy and squalenoxy substituent on a large panel of tumor cell lines. The chemical and colloidal stabilities of the geranyloxy-IFO (G-IFO), farnesyloxy-IFO (F-IFO) and squalenoxy-IFO (SQ-IFO) NAs were further evaluated in comparison to their free formulation. Finally, pharmacokinetic parameters and maximal tolerated dose of the most potent preactivated IFO analog (G-IFO) were determined and compared to IFO, paving the way to in vivo studies.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Ifosfamide/analogs & derivatives , Ifosfamide/administration & dosage , Nanostructures/administration & dosage , Animals , Antineoplastic Agents, Alkylating/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Humans , Ifosfamide/chemistry , Ifosfamide/pharmacokinetics , Male , Maximum Tolerated Dose , Mice, Nude , Nanostructures/chemistry , Prenylation
11.
Haematologica ; 101(12): 1469-1478, 2016 12.
Article in English | MEDLINE | ID: mdl-27515249

ABSTRACT

Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.


Subject(s)
Cell Differentiation , Megakaryocytes/cytology , Megakaryocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tetraploidy , rho GTP-Binding Proteins/metabolism , Biomarkers , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Cycle Proteins , Cell Differentiation/genetics , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , Hippo Signaling Pathway , Humans , Models, Biological , Nuclear Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Polyploidy , Protein Serine-Threonine Kinases/genetics , Thrombopoiesis/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , rho GTP-Binding Proteins/genetics
12.
Nanoscale ; 8(22): 11588-94, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27216436

ABSTRACT

Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ≈150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.

13.
Cell Mol Life Sci ; 73(19): 3745-60, 2016 10.
Article in English | MEDLINE | ID: mdl-27076215

ABSTRACT

Opposing views have been proposed regarding the role of tau, the principal microtubule-associated protein in axons. On the one hand, tau forms cross-bridges at the interface between microtubules and induces microtubule bundling in neurons. On the other hand, tau is also considered a polymer brush which efficiently separates microtubules. In mature axons, microtubules are indeed arranged in parallel arrays and are well separated from each other. To reconcile these views, we developed a mechanistic model based on in vitro and cellular approaches combined to analytical and numerical analyses. The results indicate that tau forms long-range cross-bridges between microtubules under macromolecular crowding conditions. Tau cross-bridges prevent the redistribution of tau away from the interface between microtubules, which would have occurred in the polymer brush model. Consequently, the short-range attractive force between microtubules induced by macromolecular crowding is avoided and thus microtubules remain well separated from each other. Interestingly, in this unified model, tau diffusion on microtubules enables to keep microtubules evenly distributed in axonal sections at low tau levels.


Subject(s)
Axons/metabolism , Microtubules/metabolism , tau Proteins/metabolism , Animals , Cerebral Cortex/metabolism , Computer Simulation , Diffusion , Fluorescence , Macromolecular Substances , Mice , Protein Domains , Tubulin/metabolism , tau Proteins/chemistry
14.
Autophagy ; 11(12): 2275-87, 2015.
Article in English | MEDLINE | ID: mdl-26565591

ABSTRACT

The Epstein-Barr virus (EBV) is associated with various lymphoproliferative disorders and lymphomas. We have previously demonstrated that treating wild-type TP53-expressing B cell lines with the TP53 pathway activator nutlin-3 induced apoptosis in EBV-negative and EBV-positive latency I cells whereas EBV-positive latency III cells remained much more apoptosis-resistant. Here, we report a constitutively high level of autophagy in these resistant cells which express high levels of the proautophagic protein BECN1/Beclin 1 based, at least in part, on the activation of the NFKB signaling pathway by the viral protein LMP1. Following treatment with nutlin-3, several autophagy-stimulating genes were upregulated both in EBV-negative and EBV-positive latency III cells. However the process of autophagy was only triggered in the latter and was associated with an upregulation of SESN1/sestrin 1 and inhibition of MTOR more rapid than in EBV-negative cells. A treatment with chloroquine, an inhibitor of autophagy, potentiated the apoptotic effect of nutlin-3, particularly in those EBV-positive cells which were resistant to apoptosis induced by nutlin-3 alone, thereby showing that autophagy participates in this resistant phenotype. Finally, using immunohistochemical staining, clinical samples from various B cell lymphoproliferations with the EBV-positive latency II or III phenotype were found to harbor a constitutively active autophagy.


Subject(s)
Apoptosis/drug effects , Autophagy , B-Lymphocytes/cytology , B-Lymphocytes/virology , Herpesvirus 4, Human , Lymphoma/pathology , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression/drug effects , Humans , Imidazoles/pharmacology , Lymphoma/virology , Piperazines/pharmacology , Tumor Suppressor Protein p53/metabolism
15.
Nucleic Acid Ther ; 25(3): 121-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25894614

ABSTRACT

Covalent binding of squalene to siRNA has already been shown to be an interesting way of delivering siRNA in vivo. Whether squalene derivatives could also be used to deliver siRNA in cells without covalent binding similar to usual transfection with cationic lipids is the question addressed in this article. Accordingly, we investigated the activity of two squalene derivatives bearing a quaternary ammonium head group and a guanidinium group, respectively. The second derivative displayed interesting properties for delivering siRNA into cells in vitro.


Subject(s)
Ionic Liquids/metabolism , RNA, Small Interfering/administration & dosage , Squalene/metabolism , Cations , Cell Line, Tumor , Humans
16.
Biomaterials ; 45: 93-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25662499

ABSTRACT

The expression of a defective gene can lead to major cell dysfunctions among which cell proliferation and tumor formation. One promising therapeutic strategy consists in silencing the defective gene using small interfering RNA (siRNA). In previous publications we showed that diamond nanocrystals (ND) of primary size 35 nm, rendered cationic by polyethyleneimine-coating, can efficiently deliver siRNA into cell, which further block the expression of EWS/FLI-1 oncogene in a Ewing sarcoma disease model. However, a therapeutic application of such nanodiamonds requires their elimination by the organism, particularly in urine, which is impossible for 35 nm particles. Here, we report that hydrogenated cationic nanodiamonds of primary size 7 nm (ND-H) have also a high affinity for siRNA and are capable of delivering them in cells. With siRNA/ND-H complexes, we measured a high inhibition efficacy of EWS/FLI-1 gene expression in Ewing sarcoma cell line. Electron microscopy investigations showed ND-H in endocytosis compartments, and especially in macropinosomes from which they can escape before siRNA degradation occurred. In addition, the association of EWS/FLI-1 silencing by the siRNA/ND-H complex with a vincristine treatment yielded a potentiation of the toxic effect of this chemotherapeutic drug. Therefore ND-H appears as a promising delivery agent in anti-tumoral gene therapy.


Subject(s)
Gene Transfer Techniques , Nanodiamonds/chemistry , Oncogene Proteins, Fusion/genetics , Plasma Gases/chemistry , Proto-Oncogene Protein c-fli-1/genetics , RNA, Small Interfering/metabolism , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/metabolism , Cations , Cell Death/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Fluorescence , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrogenation , Nanodiamonds/ultrastructure , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/ultrastructure , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Vincristine/pharmacology
17.
J Med Chem ; 58(2): 705-17, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25494842

ABSTRACT

Oxazaphosphorines are alkylating agents used in routine clinical practices for treatment of cancer for many years. They are antitumor prodrugs that require cytochrome P450 bioactivation leading to 4-hydroxy derivatives. In the case of ifosfamide (IFO), the bioactivation produces two toxic metabolites: acrolein, a urotoxic compound, concomitantly generated with the isophosphoramide mustard; and chloroacetaldehyde, a neurotoxic and nephrotoxic compound, arising from the oxidation of the side chains. To improve the therapeutic index of IFO, we have designed preactivated IFO derivatives with the covalent binding of several O- and S-alkyl moieties including polyisoprenoid groups at the C-4 position of the oxazaphosphorine ring to avoid cytochrome bioactivation favoring the release of the active entity and limiting the chloroacetaldehyde release. Thanks to the grafted terpene moieties, some of these new conjugates demonstrated spontaneous self-assembling properties into nanoassemblies when dispersed in water. The cytotoxic activities on a panel of human tumor cell lines of these novel oxazaphosphorines, in bulk form or as nanoassemblies, and the release of 4-hydroxy-IFO from these preactivated IFO analogues in plasma are reported.


Subject(s)
Antineoplastic Agents, Alkylating/chemical synthesis , Ifosfamide/analogs & derivatives , Phosphoramide Mustards/metabolism , Prodrugs/chemical synthesis , Antineoplastic Agents, Alkylating/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Drug Design , Humans , Ifosfamide/metabolism , Prodrugs/metabolism , Prodrugs/pharmacology
18.
Nucleic Acids Res ; 42(13): 8678-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25013173

ABSTRACT

The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.


Subject(s)
Cytoplasmic Granules/metabolism , Polyribosomes/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Stress, Physiological , Animals , Cells, Cultured , Cytoplasm/chemistry , Cytoplasmic Granules/chemistry , DNA, Single-Stranded/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Proteasome Inhibitors/pharmacology , Protein Multimerization , Protein Transport , Proteins/analysis , Puromycin/pharmacology , RNA/analysis , RNA, Messenger/physiology , Rats
19.
Cancer Res ; 73(7): 2247-58, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23358685

ABSTRACT

The spliceosome is a large ribonucleoprotein complex that guides pre-mRNA splicing in eukaryotic cells. Here, we determine whether the spliceosome could constitute an attractive therapeutic target in cancer. Analysis of gene expression arrays from lung, breast, and ovarian cancers datasets revealed that several genes encoding components of the core spliceosome composed of a heteroheptameric Sm complex were overexpressed in malignant disease as compared with benign lesions and could also define a subset of highly aggressive breast cancers. siRNA-mediated depletion of SmE (SNRPE) or SmD1 (SNRPD1) led to a marked reduction of cell viability in breast, lung, and melanoma cancer cell lines, whereas it had little effect on the survival of the nonmalignant MCF-10A breast epithelial cells. SNRPE or SNRPD1 depletion did not lead to apoptotic cell death but autophagy, another form of cell death. Indeed, induction of autophagy was revealed by cytoplasmic accumulation of autophagic vacuoles and by an increase in both LC3 (MAP1LC3A) protein conversion and the amount of acidic autophagic vacuoles. Knockdown of SNRPE dramatically decreased mTOR mRNA and protein levels and was accompanied by a deregulation of the mTOR pathway, which, in part, explains the SNRPE-dependent induction of autophagy. These findings provide a rational to develop new therapeutic agents targeting spliceosome core components in oncology.


Subject(s)
Autophagy , Breast Neoplasms/pathology , Lung Neoplasms/pathology , Melanoma/pathology , Spliceosomes/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , snRNP Core Proteins/antagonists & inhibitors , Apoptosis , Blotting, Western , Breast/drug effects , Breast/metabolism , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Cells, Cultured , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Melanoma/drug therapy , Melanoma/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , snRNP Core Proteins/genetics , snRNP Core Proteins/metabolism
20.
PLoS One ; 7(12): e52207, 2012.
Article in English | MEDLINE | ID: mdl-23284935

ABSTRACT

Small interfering RNAs (siRNAs) are powerful tools commonly used for the specific inhibition of gene expression. However, vectorization is required to facilitate cell penetration and to prevent siRNA degradation by nucleases. We have shown that diamond nanocrystals coated with cationic polymer can be used to carry siRNAs into Ewing sarcoma cells, in which they remain traceable over long periods, due to their intrinsic stable fluorescence. We tested two cationic polymers, polyallylamine and polyethylenimine. The release of siRNA, accompanied by Ewing sarcoma EWS-Fli1 oncogene silencing, was observed only with polyethylenimine. We investigated cell penetration and found that the underlying mechanisms accounted for these differences in behavior. Using drugs selectively inhibiting particular pathways and a combination of fluorescence and electronic microscopy, we showed that siRNA gene silencing occurred only if the siRNA:cationic nanodiamond complex followed the macropinocytosis route. These results have potential implications for the design of efficient drug-delivery vectors.


Subject(s)
Nanodiamonds/administration & dosage , Nanodiamonds/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Sarcoma, Ewing/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Microscopy, Electron, Transmission , NIH 3T3 Cells , Nanodiamonds/ultrastructure , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanotechnology , Polyamines/chemistry , Polyethyleneimine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...