Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1129323, 2023.
Article in English | MEDLINE | ID: mdl-37215135

ABSTRACT

Background: Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods: In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results: A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion: In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Receptors, IgG , Databases, Protein , Immunotherapy
2.
Methods Mol Biol ; 2453: 477-531, 2022.
Article in English | MEDLINE | ID: mdl-35622340

ABSTRACT

The variable domains (V-DOMAIN) of the antigen receptors, immunoglobulins (IG) or antibodies and T cell receptors (TR), which specifically recognize the antigens show a huge diversity in their sequences. This diversity results from the complex mechanisms involved in the synthesis of these domains at the DNA level (rearrangements of the variable (V), diversity (D), and joining (J) genes; N-diversity; and, for the IG, somatic hypermutations). The recognition of V, D, and J as "genes" and their entry in databases mark the creation of IMGT by Marie-Paule Lefranc, and the origin of immunoinformatics in 1989. For 30 years, IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org , has implemented databases and developed tools for IG and TR immunoinformatics, based on the IMGT Scientific chart rules and IMGT-ONTOLOGY concepts and axioms, and more particularly, the princeps ones: IMGT genes and alleles (CLASSIFICATION axiom) and the IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION axiom). This chapter describes the online tools for the characterization and annotation of the expressed V-DOMAIN sequences: (a) IMGT/V-QUEST analyzes in detail IG and TR rearranged nucleotide sequences, (b) IMGT/HighV-QUEST is its high throughput version, which includes a module for the identification of IMGT clonotypes and generates immunoprofiles of expressed V, D, and J genes and alleles, (c) IMGT/StatClonotype performs the pairwise comparison of IMGT/HighV-QUEST immunoprofiles, (d) IMGT/DomainGapAlign analyzes amino acid sequences and is frequently used in antibody engineering and humanization, and (e) IMGT/Collier-de-Perles provides two-dimensional (2D) graphical representations of V-DOMAIN, bridging the gap between sequences and 3D structures. These IMGT® tools are widely used in repertoire analyses of the adaptive immune responses in normal and pathological situations and in the design of engineered IG and TR for therapeutic applications.


Subject(s)
Computational Biology , Immunogenetics , Amino Acid Sequence , Antibodies/genetics , Computational Biology/methods , Immunogenetics/methods , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics
3.
Vaccines (Basel) ; 10(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35335026

ABSTRACT

The adaptive immune system, along with the innate immune system, are the two main biological processes that protect an organism from pathogens. The adaptive immune system is characterized by the specificity and extreme diversity of its antigen receptors. These antigen receptors are the immunoglobulins (IG) or antibodies of the B cells and the T cell receptors (TR) of the T cells. The IG are proteins that have a dual role in immunity: they recognize antigens and trigger elimination mechanisms, to rid the body of foreign cells. The synthesis of the immunoglobulin heavy and light chains requires gene rearrangements at the DNA level in the IGH, IGK, and IGL loci. The rhesus monkey (Macaca mulatta) is one of the most widely used nonhuman primate species in biomedical research. In this manuscript, we provide a thorough analysis of the three IG loci of the Mmul_10 assembly of rhesus monkey, integrating IMGT previously existing data. Detailed characterization of IG genes includes their localization and position in the loci, the determination of the allele functionality, and the description of the regulatory elements of their promoters as well as the sequences of the conventional recombination signals (RS). This complete annotation of the genomic IG loci of Mmul_10 assembly and the highly detailed IG gene characterization could be used as a model, in additional rhesus monkey assemblies, for the analysis of the IG allelic polymorphism and structural variation, which have been described in rhesus monkeys.

4.
Nucleic Acids Res ; 50(D1): D1262-D1272, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34875068

ABSTRACT

IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).


Subject(s)
Adaptive Immunity/immunology , Databases, Genetic , Immunogenetics , Vertebrates/genetics , Adaptive Immunity/genetics , Animals , Antibodies/classification , Antibodies/immunology , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Vertebrates/immunology
5.
Genes (Basel) ; 12(1)2020 12 28.
Article in English | MEDLINE | ID: mdl-33379283

ABSTRACT

The adaptive immune response provides the vertebrate immune system with the ability to recognize and remember specific pathogens to generate immunity, and mount stronger attacks each time the pathogen is encountered. T cell receptors are the antigen receptors of the adaptive immune response expressed by T cells, which specifically recognize processed antigens, presented as peptides by the highly polymorphic major histocompatibility (MH) proteins. T cell receptors (TR) are divided into two groups, αß and γδ, which express distinct TR containing either α and ß, or γ and δ chains, respectively. The TRα locus (TRA) and TRδ locus (TRD) of bovine (Bos taurus) and the sheep (Ovis aries) have recently been described and annotated by IMGT® biocurators. The aim of the present study is to present the results of the biocuration and to compare the genes of the TRA/TRD loci among these ruminant species based on the Homo sapiens repertoire. The comparative analysis shows similarities but also differences, including the fact that these two species have a TRA/TRD locus about three times larger than that of humans and therefore have many more genes which may demonstrate duplications and/or deletions during evolution.


Subject(s)
Cattle/genetics , Genes, T-Cell Receptor alpha/genetics , Genes, T-Cell Receptor delta/genetics , Genetic Loci/immunology , Sheep, Domestic/genetics , Adaptive Immunity/genetics , Animals , Cattle/immunology , Evolution, Molecular , Molecular Sequence Annotation , Sheep, Domestic/immunology , Species Specificity
6.
Front Immunol ; 11: 821, 2020.
Article in English | MEDLINE | ID: mdl-32431713

ABSTRACT

IMGT®, the international ImMunoGeneTics information system® is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. T cell receptors are divided into two groups, αß and γδ TR, which express distinct TR containing either α and ß, or γ and δ chains, respectively. The TRß locus (TRB) was recently described and annotated by IMGT® biocurators for several veterinary species, i.e., cat (Felis catus), dog (Canis lupus familiaris), ferret (Mustela putorius furo), pig (Sus scrofa), rabbit (Oryctolagus cuniculus), rhesus monkey (Macaca mulatta), and sheep (Ovis aries). The aim of the present study is to compare the genes of the TRB locus among these different veterinary species based on Homo sapiens. The results reveal that there are similarities but also differences including the number of genes by subgroup which may demonstrate duplications and/or deletions during evolution.


Subject(s)
Computational Biology/methods , Genes, T-Cell Receptor beta , Genetic Loci , Immunogenetics/methods , Receptors, Antigen, T-Cell, alpha-beta/genetics , Animals , Cats , Databases, Genetic , Dogs , Ferrets/genetics , Ferrets/immunology , Humans , Macaca mulatta/genetics , Macaca mulatta/immunology , Multigene Family , Phylogeny , Rabbits , Sheep/genetics , Sheep/immunology , Swine/genetics , Swine/immunology
7.
Methods Mol Biol ; 1827: 35-69, 2018.
Article in English | MEDLINE | ID: mdl-30196491

ABSTRACT

IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. Standardized sequence and structure analysis of antibody using IMGT® databases and tools allow one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Collier de Perles). IMGT® is acknowledged as the global reference for immunogenetics and immunoinformatics, and its standards are particularly useful for antibody engineering and humanization. IMGT® databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, and nucleotide sequence analysis is performed by the IMGT/V-QUEST and IMGT/JunctionAnalysis tools and for NGS by IMGT/HighV-QUEST. In this chapter, we focus on IMGT® databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT Collier de Perles tools and the IMGT/2Dstructure-DB and IMGT/3Dstructure-DB database. IMGT/mAb-DB provides the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA) and related proteins of interest (RPI) and links to the proposed and recommended lists of the World Health Organization International Nonproprietary Name (WHO INN) programme, to IMGT/2Dstructure-DB for amino acid sequences, and to IMGT/3Dstructure-DB and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose) for crystallized antibodies.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Databases, Protein , Immunogenetics , Protein Engineering/methods , Amino Acid Sequence , Animals , Epitopes/chemistry , Humans , Mice , Protein Domains
8.
Front Immunol ; 9: 329, 2018.
Article in English | MEDLINE | ID: mdl-29545792

ABSTRACT

The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9-25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.


Subject(s)
Antibodies, Viral , Antibody Specificity , Gene Products, env/immunology , Peptide Library , Simian Immunodeficiency Virus/immunology , Single-Chain Antibodies , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , High-Throughput Nucleotide Sequencing , Humans , Macaca mulatta , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
9.
BMC Immunol ; 18(1): 35, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28651553

ABSTRACT

BACKGROUND: IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. METHODS: The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. RESULTS: For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. CONCLUSION: The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.


Subject(s)
Immunogenetics/methods , Immunoglobulins/genetics , Receptors, Antigen, T-Cell/genetics , Single-Chain Antibodies/genetics , Adaptive Immunity/genetics , Animals , High-Throughput Nucleotide Sequencing , Humans , Software
10.
Front Immunol ; 8: 1796, 2017.
Article in English | MEDLINE | ID: mdl-29326697

ABSTRACT

Phage-display selection of immunoglobulin (IG) or antibody single chain Fragment variable (scFv) from combinatorial libraries is widely used for identifying new antibodies for novel targets. Next-generation sequencing (NGS) has recently emerged as a new method for the high throughput characterization of IG and T cell receptor (TR) immune repertoires both in vivo and in vitro. However, challenges remain for the NGS sequencing of scFv from combinatorial libraries owing to the scFv length (>800 bp) and the presence of two variable domains [variable heavy (VH) and variable light (VL) for IG] associated by a peptide linker in a single chain. Here, we show that single-molecule real-time (SMRT) sequencing with the Pacific Biosciences RS II platform allows for the generation of full-length scFv reads obtained from an in vivo selection of scFv-phages in an animal model of atherosclerosis. We first amplified the DNA of the phagemid inserts from scFv-phages eluted from an aortic section at the third round of the in vivo selection. From this amplified DNA, 450,558 reads were obtained from 15 SMRT cells. Highly accurate circular consensus sequences from these reads were generated, filtered by quality and then analyzed by IMGT/HighV-QUEST with the functionality for scFv. Full-length scFv were identified and characterized in 348,659 reads. Full-length scFv sequencing is an absolute requirement for analyzing the associated VH and VL domains enriched during the in vivo panning rounds. In order to further validate the ability of SMRT sequencing to provide high quality, full-length scFv sequences, we tracked the reads of an scFv-phage clone P3 previously identified by biological assays and Sanger sequencing. Sixty P3 reads showed 100% identity with the full-length scFv of 767 bp, 53 of them covering the whole insert of 977 bp, which encompassed the primer sequences. The remaining seven reads were identical over a shortened length of 939 bp that excludes the vicinity of primers at both ends. Interestingly these reads were obtained from each of the 15 SMRT cells. Thus, the SMRT sequencing method and the IMGT/HighV-QUEST functionality for scFv provides a straightforward protocol for characterization of full-length scFv from combinatorial phage libraries.

11.
Front Immunol ; 7: 339, 2016.
Article in English | MEDLINE | ID: mdl-27667992

ABSTRACT

There is a huge need for standardized analysis and statistical procedures in order to compare the complex immune repertoires of antigen receptors immunoglobulins (IG) and T cell receptors (TR) obtained by next generation sequencing (NGS). NGS technologies generate millions of nucleotide sequences and have led to the development of new tools. The IMGT/HighV-QUEST, available since 2010, is the first global web portal for the analysis of IG and TR high throughput sequences. IMGT/HighV-QUEST provides standardized outputs for the characterization of the "IMGT clonotype (AA)" (AA for amino acids) and their comparison in up to one million sequences. Standardized statistical procedures for "IMGT clonotype (AA)" diversity or expression comparisons have recently been described, however, no tool was yet available. IMGT/StatClonotype, a new IMGT(®) tool, evaluates and visualizes statistical significance of pairwise comparisons of IMGT clonotype (AA) diversity or expression, per V (variable), D (diversity), and J (joining) gene of a given IG or TR group, from NGS IMGT/HighV-QUEST statistical output. IMGT/StatClonotype tool is incorporated in the R package "IMGTStatClonotype," with a user-friendly interface. IMGT/StatClonotype is downloadable at IMGT(®) for users to evaluate pairwise comparison of IG and TR NGS statistical output from IMGT/HighV-QUEST and to visualize, on their web browser, the statistical significance of IMGT clonotype (AA) diversity or expression, per gene, the comparative analysis of CDR-IMGT and the V-D-J associations, in immunoprofiles from normal or pathological immune responses.

12.
Nucleic Acids Res ; 43(Database issue): D413-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378316

ABSTRACT

IMGT(®), the international ImMunoGeneTics information system(®)(http://www.imgt.org) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) and proteins of the IgSF and MhSF superfamilies. IMGT(®) is built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and 3D structures. The concepts include the IMGT(®) standardized keywords (identification), IMGT(®) standardized labels (description), IMGT(®) standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT(®) comprises 7 databases, 17 online tools and 15,000 pages of web resources, and provides a high-quality and integrated system for analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses, including NGS high-throughput data. Tools and databases are used in basic, veterinary and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. The IMGT/mAb-DB interface was developed for therapeutic antibodies and fusion proteins for immunological applications (FPIA). IMGT(®) is freely available at http://www.imgt.org.


Subject(s)
Databases, Genetic , Genes, Immunoglobulin , Genes, T-Cell Receptor , Histocompatibility Antigens/chemistry , Immunoglobulins/chemistry , Major Histocompatibility Complex , Receptors, Antigen, T-Cell/chemistry , Alleles , Animals , Biological Ontologies , Computational Biology , Histocompatibility Antigens/genetics , Humans , Immunogenetics , Immunoglobulins/genetics , Immunoglobulins/metabolism , Internet , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Software
13.
FEMS Microbiol Lett ; 357(1): 63-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24888447

ABSTRACT

The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is a manually curated database for those peptides for which antimicrobial activity against particular targets has been evaluated experimentally. The database is a depository of complete information on: the chemical structure of peptides; target species; target object of cell; peptide antimicrobial/haemolytic/cytotoxic activities; and experimental conditions at which activities were estimated. The DBAASP search page allows the user to search peptides according to their structural characteristics, complexity type (monomer, dimer and two-peptide), source, synthesis type (ribosomal, nonribosomal and synthetic) and target species. The database prediction algorithm provides a tool for rational design of new antimicrobial peptides. DBAASP is accessible at http://www.biomedicine.org.ge/dbaasp/.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Peptides/chemistry , Algorithms , Databases, Factual
14.
Methods Mol Biol ; 1131: 337-81, 2014.
Article in English | MEDLINE | ID: mdl-24515476

ABSTRACT

IMGT(®), the international ImMunoGeneTics information system(®) (http://www.imgt.org), created in 1989 (Centre National de la Recherche Scientifique, Montpellier University), is acknowledged as the global reference in immunogenetics and immunoinformatics. The accuracy and the consistency of the IMGT(®) data are based on IMGT-ONTOLOGY which bridges the gap between genes, sequences, and three-dimensional (3D) structures. Thus, receptors, chains, and domains are characterized with the same IMGT(®) rules and standards (IMGT standardized labels, IMGT gene and allele nomenclature, IMGT unique numbering, IMGT Collier de Perles), independently from the molecule type (genomic DNA, complementary DNA, transcript, or protein) or from the species. More particularly, IMGT(®) tools and databases provide a highly standardized analysis of the immunoglobulin (IG) or antibody and T cell receptor (TR) V and C domains. IMGT/V-QUEST analyzes the V domains of IG or TR rearranged nucleotide sequences, integrates the IMGT/JunctionAnalysis and IMGT/Automat tools, and provides IMGT Collier de Perles. IMGT/HighV-QUEST analyzes sequences from high-throughput sequencing (HTS) (up to 150,000 sequences per batch) and performs statistical analysis on up to 450,000 results, with the same resolution and high quality as IMGT/V-QUEST online. IMGT/DomainGapAlign analyzes amino acid sequences of V and C domains and IMGT/3Dstructure-DB and associated tools provide information on 3D structures, contact analysis, and paratope/epitope interactions. These IMGT(®) tools and databases, and the IMGT/mAb-DB interface with access to therapeutical antibody data, provide an invaluable help for antibody engineering and antibody humanization.


Subject(s)
Antibodies/chemistry , Antibodies/metabolism , Computational Biology , Databases, Protein
15.
Nat Commun ; 4: 2333, 2013.
Article in English | MEDLINE | ID: mdl-23995877

ABSTRACT

T cell repertoire diversity and clonotype follow-up in vaccination, cancer, infectious and immune diseases represent a major challenge owing to the enormous complexity of the data generated. Here we describe a next generation methodology, which combines 5'RACE PCR, 454 sequencing and, for analysis, IMGT, the international ImMunoGeneTics information system (IMGT), IMGT/HighV-QUEST web portal and IMGT-ONTOLOGY concepts. The approach is validated in a human case study of T cell receptor beta (TRB) repertoire, by chronologically tracking the effects of influenza vaccination on conventional and regulatory T cell subpopulations. The IMGT/HighV-QUEST paradigm defines standards for genotype/haplotype analysis and characterization of IMGT clonotypes for clonal diversity and expression and achieves a degree of resolution for next generation sequencing verifiable by the user at the sequence level, while providing a normalized reference immunoprofile for human TRB.


Subject(s)
Computational Biology/methods , Genetic Variation , Immunogenetics/methods , Internet , Receptors, Antigen, T-Cell/genetics , Alleles , Clone Cells , Flow Cytometry , Haplotypes/genetics , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta/genetics
16.
Methods Mol Biol ; 907: 3-37, 2012.
Article in English | MEDLINE | ID: mdl-22907343

ABSTRACT

IMGT(®), the international ImMunoGeneTics information system(®) (http://www.imgt.org), was created in 1989 to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). Standardized sequence and structure analysis of antibody using IMGT(®) databases and tools allows one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Colliers de Perles). IMGT(®) is the international reference for immunogenetics and immunoinformatics and its standards are particularly useful for antibody humanization and evaluation of immunogenicity. IMGT(®) databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, whereas nucleotide sequence analysis is performed by the IMGT/V-QUEST, IMGT/HighV-QUEST, and IMGT/JunctionAnalysis tools. In this chapter, we focus on IMGT(®) databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT/Collier-de-Perles tools, the IMGT/2Dstructure-DB database for amino acid sequences of monoclonal antibodies (mAb, suffix -mab) and fusion proteins for immune applications (FPIA, suffix -cept) of the World Health Organization/International Nonproprietary Name (WHO/INN) programme and other proteins of interest, and the IMGT/3Dstructure-DB database for crystallized antibodies and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose).


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Databases, Protein , Protein Engineering/methods , Amino Acid Sequence , Animals , Humans , Immunogenetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
17.
Methods Mol Biol ; 882: 569-604, 2012.
Article in English | MEDLINE | ID: mdl-22665256

ABSTRACT

IMGT/V-QUEST is the highly customized and integrated online IMGT(®) tool for the standardized analysis of the immunoglobulin (IG) or antibody and T cell receptor (TR) rearranged nucleotide sequences. The analysis of these antigen receptors represents a crucial challenge for the study of the adaptive immune response in normal and disease-related situations. The expressed IG and TR repertoires represent a potential of 10(12) IG and 10(12) TR per individual. This huge diversity results from mechanisms that occur at the DNA level during the IG and TR molecular synthesis. These mechanisms include the combinatorial rearrangements of the variable (V), diversity (D) and joining (J) genes, the N-diversity (deletion and addition at random of nucleotides during the V-(D)-J rearrangement) and, for IG, somatic hypermutations. IMGT/V-QUEST identifies the V, D, J genes and alleles by alignment with the germline IG and TR gene and allele sequences of the IMGT reference directory. The tool describes the V-REGION mutations and identifies the hot spot positions in the closest germline V gene. IMGT/V-QUEST integrates IMGT/JunctionAnalysis for a detailed analysis of the V-J and V-D-J junctions and IMGT/Automat for a complete annotation of the sequences and also provides IMGT Collier de Perles. IMGT/HighV-QUEST, the high-throughput version of IMGT/V-QUEST, implemented to answer the needs of deep sequencing data analysis from Next Generation Sequencing (NGS), allows the analysis of thousands of IG and TR sequences in a single run. IMGT/V-QUEST and IMGT/HighV-QUEST are available at the IMGT(®) Home page, http://www.imgt.org.


Subject(s)
Computational Biology/methods , Immunoglobulins/genetics , Internet , Polymorphism, Genetic/genetics , Receptors, Antigen, T-Cell/genetics , Software , V(D)J Recombination/genetics , Alleles , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Sequence Alignment , Somatic Hypermutation, Immunoglobulin/genetics
19.
Philos Trans A Math Phys Eng Sci ; 368(1920): 2799-815, 2010 Jun 13.
Article in English | MEDLINE | ID: mdl-20439274

ABSTRACT

The ultimate aim of the EU-funded ImmunoGrid project is to develop a natural-scale model of the human immune system-that is, one that reflects both the diversity and the relative proportions of the molecules and cells that comprise it-together with the grid infrastructure necessary to apply this model to specific applications in the field of immunology. These objectives present the ImmunoGrid Consortium with formidable challenges in terms of complexity of the immune system, our partial understanding about how the immune system works, the lack of reliable data and the scale of computational resources required. In this paper, we explain the key challenges and the approaches adopted to overcome them. We also consider wider implications for the present ambitious plans to develop natural-scale, integrated models of the human body that can make contributions to personalized health care, such as the European Virtual Physiological Human initiative. Finally, we ask a key question: How long will it take us to resolve these challenges and when can we expect to have fully functional models that will deliver health-care benefits in the form of personalized care solutions and improved disease prevention?


Subject(s)
Immunity, Innate/immunology , Internet , Models, Immunological , Proteome/immunology , Software , Computer Simulation , Humans
20.
BMC Bioinformatics ; 11: 223, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20433708

ABSTRACT

BACKGROUND: The antigen receptors, immunoglobulins (IG) and T cell receptors (TR), are specific molecular components of the adaptive immune response of vertebrates. Their genes are organized in the genome in several loci (7 in humans) that comprise different gene types: variable (V), diversity (D), joining (J) and constant (C) genes. Synthesis of the IG and TR proteins requires rearrangements of V and J, or V, D and J genes at the DNA level, followed by the splicing at the RNA level of the rearranged V-J and V-D-J genes to C genes. Owing to the particularities of IG and TR gene structures related to these molecular mechanisms, conventional bioinformatic software and tools are not adapted to the identification and description of IG and TR genes in large genomic sequences. In order to answer that need, IMGT, the international ImMunoGeneTics information system, has developed IMGT/LIGMotif, a tool for IG and TR gene annotation. This tool is based on standardized rules defined in IMGT-ONTOLOGY, the first ontology in immunogenetics and immunoinformatics. RESULTS: IMGT/LIGMotif currently annotates human and mouse IG and TR loci in large genomic sequences. The annotation includes gene identification and orientation on DNA strand, description of the V, D and J genes by assigning IMGT labels, gene functionality, and finally, gene delimitation and cluster assembly. IMGT/LIGMotif analyses sequences up to 2.5 megabase pairs and can analyse them in batch files. CONCLUSIONS: IMGT/LIGMotif is currently used by the IMGT biocurators to annotate, in a first step, IG and TR genomic sequences of human and mouse in new haplotypes and those of closely related species, nonhuman primates and rat, respectively. In a next step, and following enrichment of its reference databases, IMGT/LIGMotif will be used to annotate IG and TR of more distantly related vertebrate species. IMGT/LIGMotif is available at http://www.imgt.org/ligmotif/.


Subject(s)
Genes, Immunoglobulin , Genes, T-Cell Receptor , Genome , Genomics/methods , Software , Animals , Databases, Genetic , Humans , Immunoglobulins/chemistry , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...