Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Curr Opin Lipidol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38841827

ABSTRACT

PURPOSE OF REVIEW: This review endeavours to explore the aetiopathogenesis and impact of severe hypertriglyceridemia (SHTG) and chylomicronaemia on cardiovascular, and pancreatic complications and summarizes the novel pharmacological options for management. RECENT FINDINGS: SHTG, although rare, presents significant diagnostic and therapeutic challenges. Familial chylomicronaemia syndrome (FCS), is the rare monogenic form of SHTG, associated with increased acute pancreatitis (AP) risk, whereas relatively common multifactorial chylomicronaemia syndrome (MCS) leans more towards cardiovascular complications. Despite the introduction and validation of the FCS Score, FCS continues to be underdiagnosed and diagnosis is often delayed. Longitudinal data on disease progression remains scant. SHTG-induced AP remains a life-threatening concern, with conservative treatment as the cornerstone while blood purification techniques offer limited additional benefit. Conventional lipid-lowering medications exhibit minimal efficacy, underscoring the growing interest in novel therapeutic avenues, that is, antisense oligonucleotides (ASO) and short interfering RNA (siRNA) targeting apolipoprotein C3 (ApoC3) and angiopoietin-like protein 3 and/or 8 (ANGPTL3/8). SUMMARY: Despite advancements in understanding the genetic basis and pathogenesis of SHTG, diagnostic and therapeutic challenges persist. The rarity of FCS and the heterogenous phenotype of MCS underscore the need for the development of predictive models for complications and tailored personalized treatment strategies. The establishment of national and international registries is advocated to augment disease comprehension and identify high-risk individuals.

2.
Atherosclerosis ; 391: 117476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447437

ABSTRACT

BACKGROUND AND AIMS: Prognosis and management differ between familial chylomicronaemia syndrome (FCS), a rare autosomal recessive disorder, and multifactorial chylomicronaemia syndrome (MCS) or severe mixed hyperlipidaemia. A clinical scoring tool to differentiate these conditions has been devised but not been validated in other populations. The objective of this study was to validate this score in the UK population and identify any additional factors that might improve it. METHODS: A retrospective validation study was conducted using data from 151 patients comprising 75 FCS and 76 MCS patients. All participants had undergone genetic testing for genes implicated in FCS. Validation was performed by standard methods. Additional variables were identified from clinical data by logistic regression analysis. RESULTS: At the recommended FCS score threshold ≥10 points, the sensitivity and specificity of the score in the UK population were 96% and 75%, respectively. The receiver operating characteristic (ROC) curve analysis yielded an area under the curve (AUC) of 0.88 (95% CI 0.83-0.94, p < 0.001). This study identified non-European (predominantly South Asian) ethnicity, parental consanguinity, body mass index (BMI) < 25 kg/m2, and recurrent pancreatitis as additional positive predictors, while BMI >30 kg/m2 was found to be a negative predictor for FCS. However, inclusion of additional FCS predictors had no significant impact on performance of standard FCS score. CONCLUSIONS: Our study validates the FCS score in the UK population to distinguish FCS from MCS. While additional FCS predictors were identified, they did not improve further the score diagnostic performance.


Subject(s)
Hyperlipoproteinemia Type I , Humans , Retrospective Studies , Hyperlipoproteinemia Type I/diagnosis , Hyperlipoproteinemia Type I/genetics , Sensitivity and Specificity , ROC Curve , United Kingdom/epidemiology
3.
Curr Opin Lipidol ; 34(5): 221-233, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37560987

ABSTRACT

PURPOSE OF REVIEW: The aim of this review was to provide an overview of the role of novel biomarkers in metabolic syndrome, their association with cardiovascular risk and the impact of bariatric surgery on these biomarkers. RECENT FINDINGS: Metabolic syndrome encompasses an intricate network of health problems, and its constituents extend beyond the components of its operational definition. Obesity-related dyslipidaemia not only leads to quantitative changes in lipoprotein concentration but also alteration in qualitative composition of various lipoprotein subfractions, including HDL particles, rendering them proatherogenic. This is compounded by the concurrent existence of obstructive sleep apnoea (OSA) and nonalcoholic fatty liver disease (NAFLD), which pave the common pathway to inflammation and oxidative stress culminating in heightened atherosclerotic cardiovascular disease (ASCVD) risk. Bariatric surgery is an exceptional modality to reverse both conventional and less recognised aspects of metabolic syndrome. It reduces the burden of atherosclerosis by ameliorating the impact of obesity and its related complications (OSA, NAFLD) on quantitative and qualitative composition of lipoproteins, ultimately improving endothelial function and cardiovascular morbidity and mortality. SUMMARY: Several novel biomarkers, which are not traditionally considered as components of metabolic syndrome play a crucial role in determining ASCVD risk in metabolic syndrome. Due to their independent association with ASCVD, it is imperative that these are addressed. Bariatric surgery is a widely recognized intervention to improve the conventional risk factors associated with metabolic syndrome; however, it also serves as an effective treatment to optimize novel biomarkers.


Subject(s)
Bariatric Surgery , Cardiovascular Diseases , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Sleep Apnea, Obstructive , Humans , Metabolic Syndrome/complications , Non-alcoholic Fatty Liver Disease/complications , Risk Factors , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Obesity/complications , Bariatric Surgery/adverse effects , Heart Disease Risk Factors , Biomarkers , Sleep Apnea, Obstructive/complications
4.
Metabolites ; 13(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37233662

ABSTRACT

We have reviewed the genetic basis of chylomicronaemia, the difference between monogenic and polygenic hypertriglyceridaemia, its effects on pancreatic, cardiovascular, and microvascular complications, and current and potential future pharmacotherapies. Severe hypertriglyceridaemia (TG > 10 mmol/L or 1000 mg/dL) is rare with a prevalence of <1%. It has a complex genetic basis. In some individuals, the inheritance of a single rare variant with a large effect size leads to severe hypertriglyceridaemia and fasting chylomicronaemia of monogenic origin, termed as familial chylomicronaemia syndrome (FCS). Alternatively, the accumulation of multiple low-effect variants causes polygenic hypertriglyceridaemia, which increases the tendency to develop fasting chylomicronaemia in presence of acquired factors, termed as multifactorial chylomicronaemia syndrome (MCS). FCS is an autosomal recessive disease characterized by a pathogenic variant of the lipoprotein lipase (LPL) gene or one of its regulators. The risk of pancreatic complications and associated morbidity and mortality are higher in FCS than in MCS. FCS has a more favourable cardiometabolic profile and a low prevalence of atherosclerotic cardiovascular disease (ASCVD) compared to MCS. The cornerstone of the management of severe hypertriglyceridaemia is a very-low-fat diet. FCS does not respond to traditional lipid-lowering therapies. Several novel pharmacotherapeutic agents are in various phases of development. Data on the correlation between genotype and phenotype in FCS are scarce. Further research to investigate the impact of individual gene variants on the natural history of the disease, and its link with ASCVD, microvascular disease, and acute or recurrent pancreatitis, is warranted. Volanesorsen reduces triglyceride concentration and frequency of pancreatitis effectively in patients with FCS and MCS. Several other therapeutic agents are in development. Understanding the natural history of FCS and MCS is necessary to rationalise healthcare resources and decide when to deploy these high-cost low-volume therapeutic agents.

6.
Front Cardiovasc Med ; 10: 1065967, 2023.
Article in English | MEDLINE | ID: mdl-36873390

ABSTRACT

Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.

7.
Lancet Diabetes Endocrinol ; 11(2): 68-69, 2023 02.
Article in English | MEDLINE | ID: mdl-36623516

Subject(s)
COVID-19 , Humans , Lipids
8.
Curr Opin Lipidol ; 33(4): 219-226, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36082945

ABSTRACT

PURPOSE OF REVIEW: Guidelines for cholesterol-lowering treatment generally include extensive review of epidemiological and clinical trial evidence. However, the next logical step, the translation of evidence into clinical advice, occurs not entirely by reasoning, but by a form of consensus in which the prejudices and established beliefs of the societies with interests in cardiovascular disease convened to interpret the evidence are prominent. Methods, which are the subject of this review, have, however, been developed by which clinical trial evidence can be translated objectively into best practice. RECENT FINDINGS: Guidelines differ in their recommended goals for cholesterol-lowering treatment in the prevention of atherosclerotic cardiovascular disease (ASCVD). Proposed goals are LDL-cholesterol 2.6 mmol/l (100 mg/dl) or less in lower risk, LDL-cholesterol 1.8 mmol/l (70 mg/dl) or less in higher risk, non-HDL-cholesterol decrease of at least 40% or LDL-cholesterol 1.8 mmol/l (70 mg/dl) or less or decreased by at least 50% whichever is lower. Evidence from clinical trials of statins, ezetimibe and proprotein convertase subtilisin/kexin type 9-inhibitors can be expressed in simple mathematical terms to compare the efficacy on ASCVD incidence of clinical guidance for the use of cholesterol-lowering medication. The target LDL-cholesterol of 2.6 mmol/l (100 mg/dl) is ineffective and lacks credibility. Cholesterol-lowering medication is most effective in high-risk people with raised LDL-cholesterol. The best overall therapeutic target is LDL-cholesterol 1.8 mmol/l (70 mg/dl) or less or decreased by at least 50% whichever is lower. The use of non-HDL-cholesterol as a therapeutic goal is less efficacious. Aiming for LDL-cholesterol 1.4 mmol/l (55 mg/dl) or less as opposed to 1.8 mmol/l produces only a small additional benefit. Evidence for apolipoprotein B targets in hypertriglyceridaemia and in very high ASCVD risk should be more prominent in future guidelines. SUMMARY: The LDL-cholesterol goal of 2.6 mmol/l or less should be abandoned. Percentage decreases in LDL-cholesterol or non-HDL-cholesterol concentration are better in people with initial concentrations of less than 3.6 mmol/l. The LDL-cholesterol target of 1.8 mmol/l is most effective when initial LDL-cholesterol is more than 3.6 mmol/l in both primary and secondary prevention.


Subject(s)
Anticholesteremic Agents , Atherosclerosis , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Anticholesteremic Agents/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/epidemiology , Atherosclerosis/prevention & control , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cholesterol , Cholesterol, LDL , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipoproteins
9.
Curr Opin Lipidol ; 33(4): 257-263, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35942820

ABSTRACT

PURPOSE OF REVIEW: The role of lipoprotein (a) in atherogenesis has been the subject of argument for many years. Evidence that it is raised in familial hypercholesterolaemia has been disputed not least because a mechanism related to low density lipoprotein (LDL) receptor mediated catabolism has been lacking. Whether lipoprotein (a) increases the already raised atherosclerotic cardiovascular disease (ASCVD) risk in familial hypercholesterolaemia is also more dubious than is often stated. We review the evidence in an attempt to provide greater clarity. RECENT FINDINGS: Lipoprotein (a) levels are raised as a consequence of inheriting familial hypercholesterolaemia. The mechanism for this is likely to involve increased hepatic production, probably mediated by PCSK9 augmented by apolipoprotein E. The extent to which raised lipoprotein (a) contributes to the increased ASCVD risk in familial hypercholesterolaemia remains controversial.Unlike, for example, statins which are effective across the whole spectrum of LDL concentrations, drugs in development to specifically lower lipoprotein (a) are likely to be most effective in people with the highest levels of lipoprotein (a). People with familial hypercholesterolaemia may therefore be in the vanguard of those in whom theses agents should be exhibited. SUMMARY: Inheritance of familial hypercholesterolaemia undoubtedly increases the likelihood that lipoprotein (a) will be raised. However, in familial hypercholesterolaemia when ASCVD incidence is already greatly increased due to high LDL cholesterol, whether lipoprotein (a) contributes further to this risk cogently needs to be tested with drugs designed to specifically lower lipoprotein (a).


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Hyperlipoproteinemia Type II , Atherosclerosis/complications , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/complications , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Lipoprotein(a) , Proprotein Convertase 9
10.
BMJ Open ; 12(5): e050266, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613766

ABSTRACT

OBJECTIVE: To compare quantitatively different recommended goals for cholesterol-lowering treatment in the primary prevention of atherosclerotic cardiovascular disease (ASCVD). DESIGN: Outcomes at pretreatment low-density lipoprotein (LDL) cholesterol concentrations from 2 to 5 mmol/L and 10-year ASCVD risk from 5% to 30% were modelled, using the decrease in risk ratio per mmol/L reduction in LDL cholesterol derived from randomised controlled trials (RCTs) of cholesterol-lowering medication. DATA SOURCE: Summary statistics from 26 RCTs comparing treatment versus placebo or less versus more effective treatment and 12 RCTs in which statin was compared with a higher dose of the same statin or with a similar statin dose to which an adjunctive cholesterol-lowering drug was added. SETTING: The different recommended goals are: (1) LDL cholesterol≤2.6 mmol/L (100 mg/dL); (2) LDL cholesterol≤1.8 mmol/L (70 mg/dL); (3) non-high density lipoprotein (HDL) cholesterol decrease of ≥40%; or (4) LDL cholesterol≤1.8 mmol/L (70 mg/dL) or decreased by ≥50% whichever is lower. PARTICIPANTS: RCT participants. INTERVENTIONS: Statins alone or in combination with ezetimibe or proprotein convertase subtilisin/kexin type 9 inhibitors. MAIN OUTCOME MEASURES: For each of the recommended therapeutic goals, our primary outcome was the number of events prevented per 100 people treated for 10 years (N100) and the number of needed to treat (NNT) to prevent one event over 10 years. RESULTS: At pretreatment LDL cholesterol 4-5 mmol/L, all four goals provided similar benefit with N100 1.47-16.45 (NNT 6-68), depending on ASCVD risk and pretreatment LDL cholesterol. With initial LDL cholesterol in the range 2-3 mmol/L, the target of 2.6 mmol/L was the least effective with N100 between 0 and 2.84 (NNT 35-infinity). The goal of 1.8 mmol/L was little better. However, reductions in non-HDL cholesterol by ≥40% or of LDL cholesterol to 1.8 mmol/L and/or by 50%, whichever is lower, were more effective, delivering N100 of between 0.9 and 9.33 (NNT 11-111). Percentage decreases in LDL cholesterol or non-HDL cholesterol concentration are more effective targets than absolute change in concentration in people with initial values of <4 mmol/L. CONCLUSIONS: The LDL cholesterol target of 1.8 mmol/L is most effective when initial LDL cholesterol is >4 mmol/L. The time has probably come for the LDL cholesterol goal of <2.6 mmol/L to be abandoned.


Subject(s)
Anticholesteremic Agents , Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Anticholesteremic Agents/therapeutic use , Atherosclerosis/prevention & control , Cholesterol , Cholesterol, LDL , Goals , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Primary Prevention
11.
J Clin Endocrinol Metab ; 107(8): 2182-2194, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35639942

ABSTRACT

BACKGROUND: Emerging evidence suggests an association between impaired high-density lipoprotein (HDL) functionality and cardiovascular disease (CVD). HDL is essential for reverse cholesterol transport (RCT) and reduces inflammation and oxidative stress principally via paraoxonase-1 (PON1). RCT depends on HDL's capacity to accept cholesterol (cholesterol efflux capacity [CEC]) and active transport through ATP-binding cassette (ABC) A1, G1, and scavenger receptor-B1 (SR-B1). We have studied the impact of Roux-en-Y gastric bypass (RYGB) in morbidly obese subjects on RCT and HDL functionality. METHODS: Biomarkers associated with increased CVD risk including tumour necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hsCRP), myeloperoxidase mass (MPO), PON1 activity, and CEC in vitro were measured in 44 patients before and 6 and 12 months after RYGB. Overweight but otherwise healthy (mean body mass index [BMI] 28 kg/m2) subjects acted as controls. Twelve participants also underwent gluteal subcutaneous adipose tissue biopsies before and 6 months after RYGB for targeted gene expression (ABCA1, ABCG1, SR-B1, TNF-α) and histological analysis (adipocyte size, macrophage density, TNF-α immunostaining). RESULTS: Significant (P < 0.05) improvements in BMI, HDL-cholesterol, hsCRP, TNF-α, MPO mass, PON1 activity, and CEC in vitro were observed after RYGB. ABCG1 (fold-change, 2.24; P = 0.005) and ABCA1 gene expression increased significantly (fold-change, 1.34; P = 0.05). Gluteal fat adipocyte size (P < 0.0001), macrophage density (P = 0.0067), and TNF-α immunostaining (P = 0.0425) were reduced after RYBG and ABCG1 expression correlated inversely with TNF-α immunostaining (r = -0.71; P = 0.03). CONCLUSION: RYGB enhances HDL functionality in association with a reduction in adipose tissue and systemic inflammation.


Subject(s)
Bariatric Surgery , Cardiovascular Diseases , Inflammation , Lipoproteins, HDL , ATP Binding Cassette Transporter 1/metabolism , Aryldialkylphosphatase , C-Reactive Protein/metabolism , Cholesterol/metabolism , Humans , Inflammation/metabolism , Inflammation/therapy , Lipoproteins, HDL/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Atherosclerosis ; 346: 10-17, 2022 04.
Article in English | MEDLINE | ID: mdl-35247628

ABSTRACT

BACKGROUND AND AIMS: The causal relationship between LDL cholesterol (LDL-C) and the pathogenesis of atherosclerosis is well established. Previous studies have shown that modifications, glycation and oxidation of LDL enhance its atherogenic potential. Glycation of LDL occurs in it is main protein component, apolipoprotein B100 (ApoB). Our aim was to assess the effect of bariatric surgery on circulating glycApoB levels and understand the factors influencing changes in its circulating levels. METHODS: We measured glycApoB in 49 individuals before, 6 and 12 months after bariatric surgery. We also assessed clinical parameters, lipoproteins, markers of inflammation and glycaemia. Correlation analysis was done to understand associations between changes in variables from baseline to 12 months after surgery. RESULTS: Reductions in glycApoB post-bariatric surgery were significant regardless of whether the patients suffered from type 2 diabetes (T2DM) or took lipid-lowering therapy. There were no significant differences in glycApoB levels at baseline and follow-up between participants with T2DM and those without. GlycApoB declined from baseline in non-diabetics at 6 months and significantly at 12 months (1.09 mg/l vs 0.63 mg/l vs 0.49 mg/l, p < 0.05), and in those with T2DM at 6 months and significantly at 12 months (1.77 mg/l vs 1.03 mg/l vs 0.68 mg/l, p < 0.05). The percentage change in glycApoB correlated (p < 0.05) with changes in glucose (ρ = 0.40), insulin (ρ = 0.41) and HOMA-IR (%) (ρ = 0.43). There were no significant associations between changes in glycApoB and changes in total serum ApoB, LDL-C, high sensitivity C-reactive protein, weight, or BMI. CONCLUSIONS: Bariatric surgery reduces levels of glycApoB; this reduction is associated with decreased insulin resistance postoperatively. This potentially reflects the potent influence of obesity-related insulin resistance on lipoprotein glycation. Our observations are of potential importance in explaining the effectiveness of bariatric surgery in decreasing cardiovascular disease (CVD) risk in both T2DM and obese individuals without T2DM, as glycation of ApoB is known to be associated with increased atherogenesis.


Subject(s)
Atherosclerosis , Bariatric Surgery , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Apolipoprotein B-100 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Cholesterol, LDL , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Glycation End Products, Advanced , Heart Disease Risk Factors , Humans , Lipoproteins , Lipoproteins, LDL , Obesity/complications , Obesity/diagnosis , Obesity/surgery , Risk Factors
13.
Obes Surg ; 32(2): 355-364, 2022 02.
Article in English | MEDLINE | ID: mdl-34888742

ABSTRACT

PURPOSE: Autoantibodies against apolipoprotein A-1 have been associated with cardiovascular disease, poorer CV outcomes and all-cause mortality in obese individuals. The impact of bariatric surgery (BS) on the presence of circulating anti-apoA-1 IgG antibodies is unknown. This study aimed to determine the effect of bariatric surgery on auto-antibodies titres against Apolipoprotein A-1 (anti-apoA-1 IgG), looking for changes associated with lipid parameters, insulin resistance, inflammatory profile and percentage of excess body mass index loss (%EBMIL). MATERIALS AND METHODS: We assessed 55 patients (40 women) before, 6 and 12 months post-operatively. Baseline and post-operative clinical history and measurements of body mass index (BMI), serum cholesterol, triglycerides, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C), apoA-1, highly sensitive C-reactive protein (hsCRP), fasting glucose (FG), glycated haemoglobin (HbA1c) and HOMA-IR were taken at each point. Human anti-apoA-1 IgG were measured by ELISA. RESULTS: The mean age of participants was 50 years. BS significantly improved BMI, %EBMIL triglycerides, HDL-C, apoA-1, hsCRP, HBA1c, FG and HOMA-IR. Baseline anti-apoA-1 IgG seropositivity was 25% and was associated with lower apoA-1 and higher hsCRP levels. One year after BS, anti-apoA-1 IgG seropositivity decreased to 15% (p = 0.007) and median anti-apoA-1 IgG values decreased from 0.70 (0.56-0.84) to 0.47 (0.37-0.61) AU (p < 0.001). Post-operative anti-apoA-1 IgG levels were significantly associated with a decreased post-surgical %EBMIL at 1 year. CONCLUSION: Bariatric surgery results in significant reduction in anti-apoA-1 IgG levels, which may adversely influence weight loss. The exact mechanisms underpinning these results are elusive and require further study before defining any clinical recommendations.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Apolipoprotein A-I/metabolism , C-Reactive Protein , Cholesterol , Cholesterol, HDL , Female , Glycated Hemoglobin , Humans , Immunoglobulin G , Male , Middle Aged , Obesity, Morbid/surgery , Prospective Studies , Triglycerides
14.
Sci Rep ; 11(1): 12573, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131170

ABSTRACT

Obesity and associated dyslipidemia may contribute to increased cardiovascular disease. Obesity has also been associated with neuropathy. We have investigated presence of peripheral nerve damage in patients with severe obesity without type 2 diabetes and the status of metabolic syndrome and lipoprotein abnormalities. 47participants with severe obesity and 30 age-matched healthy controls underwent detailed phenotyping of neuropathy and an assessment of lipoproteins and HDL-functionality. Participants with severe obesity had a higher neuropathy symptom profile, lower sural and peroneal nerve amplitudes, abnormal thermal thresholds, heart rate variability with deep breathing and corneal nerve parameters compared to healthy controls. Circulating apolipoprotein A1 (P = 0.009), HDL cholesterol (HDL-C) (P < 0.0001), cholesterol efflux (P = 0.002) and paroxonase-1 (PON-1) activity (P < 0.0001) were lower, and serum amyloid A (SAA) (P < 0.0001) was higher in participants with obesity compared to controls. Obese participants with small nerve fibre damage had higher serum triglycerides (P = 0.02), lower PON-1 activity (P = 0.002) and higher prevalence of metabolic syndrome (58% vs. 23%, P = 0.02) compared to those without. However, HDL-C (P = 0.8), cholesterol efflux (P = 0.08), apoA1 (P = 0.8) and SAA (P = 0.8) did not differ significantly between obese participants with and without small nerve fibre damage. Small nerve fibre damage occurs in people with severe obesity. Patients with obesity have deranged lipoproteins and compromised HDL functionality compared to controls. Obese patients with evidence of small nerve fibre damage, compared to those without, had significantly higher serum triglycerides, lower PON-1 activity and a higher prevalence of metabolic syndrome.


Subject(s)
Apolipoprotein A-I/blood , Aryldialkylphosphatase/blood , Cholesterol, HDL/blood , Obesity, Morbid/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Female , Humans , Lipoproteins/blood , Male , Metabolic Syndrome , Middle Aged , Obesity, Morbid/pathology , Serum Amyloid A Protein/genetics
16.
J Clin Lipidol ; 15(2): 320-331, 2021.
Article in English | MEDLINE | ID: mdl-33518459

ABSTRACT

BACKGROUND: Obesity is associated with adverse cardiovascular outcomes and this is improved following bariatric surgery. Oxidised phospholipids (OxPL) are thought to reflect the pro-inflammatory effects of lipoprotein(a) [Lp(a)], and both are independent predictors of cardiovascular disease. OBJECTIVE: Our study sought to determine the impact of bariatric surgery on OxPL, biomarkers of oxidised LDL (OxLDL) and Lp(a). METHODS: This is a prospective, observational study of 59 patients with severe obesity undergoing bariatric surgery. Blood samples were obtained prior to surgery and at 6 and 12 months after. Sixteen patients attending the tertiary medical weight management clinic at the same centre were also recruited for comparison. Lipid and metabolic blood parameters, OxLDL, OxPL on apolipoprotein B-100 (OxPL-apoB), IgG and IgM autoantibodies to MDA-LDL, IgG and IgM apoB-immune complexes and Lp(a) were measured. RESULTS: Reduction in body mass index (BMI) was significant following bariatric surgery, from median 48 kg/m2 at baseline to 37 kg/m2 at 6 months and 33 kg/m2 at 12 months. OxPL-apoB levels decreased significantly at 12 months following surgery [5.0 (3.2-7.4) to 3.8 (3.0-5.5) nM, p = 0.001], while contrastingly, Lp(a) increased significantly [10.2 (3.8-31.9) to 16.9 (4.9-38.6) mg/dl, p = 0.002]. There were significant post-surgical decreases in IgG and IgM biomarkers, particularly at 12 months, while OxLDL remained unchanged. CONCLUSIONS: Bariatric surgery results in a significant increase in Lp(a) but reductions in OxPL-apoB and other biomarkers of oxidised lipoproteins, suggesting increased synthetic capacity and reduced oxidative stress. These biomarkers might be clinically useful to monitor physiological effects of weight loss interventions.


Subject(s)
Lipoproteins, LDL , Adult , Humans , Middle Aged , Phospholipids , Prospective Studies
17.
Int J Obes (Lond) ; 45(3): 631-638, 2021 03.
Article in English | MEDLINE | ID: mdl-33504933

ABSTRACT

INTRODUCTION: Subjects with obesity have metabolic risk factors for nerve fibre damage. Because bariatric surgery improves these risk factors we have assessed whether this can ameliorate nerve fibre damage. METHODS: Twenty-six obese subjects without diabetes (age: 46.23 ± 8.6, BMI: 48.7 ± 1.5, HbA1c: 38.0 ± 4.5) and 20 controls (age: 48.3 ± 6.2, BMI: 26.8 ± 4.2, HbA1c: 39.1 ± 2.6) underwent detailed assessment of neuropathy at baseline and 12 months after bariatric surgery. RESULTS: Obese subjects had normal peroneal (45.9 ± 5.5 vs. 48.1 ± 4.5, P = 0.1) and sural (46.9 ± 7.6 vs. 47.9 ± 10.6, P = 0.1) nerve conduction velocity, but a significantly higher neuropathy symptom profile (NSP) (4.3 ± 5.7 vs. 0.3 ± 0.6, P = 0.001), vibration perception threshold (VPT) (V) (10.2 ± 6.8 vs. 4.8 ± 2.7, P < 0.0001), warm threshold (C°) (40.4 ± 3.5 vs. 37.2 ± 1.8, P = 0.003) and lower peroneal (3.8 ± 2.2 vs. 4.9 ± 2.2, P = 0.02) and sural (8.9 ± 5.8 vs. 15.2 ± 8.5, P < 0.0001) nerve amplitude, deep breathing-heart rate variability (DB-HRV) (beats/min) (21.7 ± 4.1 vs. 30.1 ± 14, P = 0.001), corneal nerve fibre density (CNFD) (n/mm2) (25.6 ± 5.3 vs. 32.0 ± 3.1, P < 0.0001), corneal nerve branch density (CNBD) (n/mm2) (56.9 ± 27.5 vs. 111.4 ± 30.7, P < 0.0001) and corneal nerve fibre length (CNFL) (mm/mm2) (17.9 ± 4.1 vs. 29.8 ± 4.9, P < 0.0001) compared to controls at baseline. In control subjects there was no change in neuropathy measures over 12 months. However, 12 months after bariatric surgery there was a significant reduction in BMI (33.7 ± 1.7 vs. 48.7 ± 1.5, P = 0.001), HbA1c (34.3 ± 0.6 vs. 38.0 ± 4.5, P = 0.0002), triglycerides (mmol/l) (1.3 ± 0.6 vs. 1.6 ± 0.8, P = 0.005) and low-density lipoprotein cholesterol (mmol/l) (2.7 ± 0.7 vs. 3.1 ± 0.9, P = 0.02) and an increase in high-density lipoprotein cholesterol (mmol/l) (1.2 ± 0.3 vs. 1.04 ± 0.2, P = 0.002). There was a significant improvement in NSP (1.6 ± 2.7 vs. 4.3 ± 5.7, P = 0.004), neuropathy disability score (0.3 ± 0.9 vs. 1.3 ± 2.0, P = 0.03), CNFD (28.2 ± 4.4 vs. 25.6 ± 5.3, P = 0.03), CNBD (64.7 ± 26.1 vs. 56.9 ± 27.5, P = 0.04) and CNFL (20.4 ± 1.2 vs. 17.9 ± 4.1, P = 0.02), but no change in cold and warm threshold, VPT, DB-HRV or nerve conduction velocity and amplitude. Increase in CNFD correlated with a decrease in triglycerides (r = -0.45, P = 0.04). CONCLUSION: Obese subjects have evidence of neuropathy, and bariatric surgery leads to an improvement in weight, HbA1c, lipids, neuropathic symptoms and deficits and small nerve fibre regeneration without a change in quantitative sensory testing, autonomic function or neurophysiology.


Subject(s)
Bariatric Surgery/statistics & numerical data , Cornea , Nerve Fibers/physiology , Obesity , Adult , Cohort Studies , Cornea/innervation , Cornea/physiology , Female , Humans , Male , Middle Aged , Obesity/physiopathology , Obesity/surgery
18.
Obes Surg ; 31(2): 554-563, 2021 02.
Article in English | MEDLINE | ID: mdl-33104989

ABSTRACT

PURPOSE: There are limited data on the impact of bariatric surgery on microvascular complications of type 2 diabetes (T2D), particularly diabetic neuropathy. We assessed microvascular complications (especially neuropathy) in obese patients with T2D before and 12 months after bariatric surgery. MATERIALS AND METHODS: This was a prospective observational cohort study. Measurements of neuropathy symptom profile (NSP), neuropathy disability score (NDS), vibration (VPT), cold (CPT) and warm (WPT) perception thresholds, nerve conduction studies (NCS) and corneal confocal microscopy (CCM) to quantify corneal nerve fibre density (CNFD), branch density (CNBD) and fibre length (CNFL); urinary albumin/creatinine ratio (uACR), estimated glomerular filtration rate (eGFRcyst-creat) and retinal grading were taken. RESULTS: Twenty-six (62% female; median age 52 years) obese patients with T2D were recruited. Body mass index (BMI) (47.2 to 34.5 kg/m2; p < 0.001) decreased post-operatively. There were improvements in CNFD (27.1 to 29.2/mm2; p = 0.005), CNBD (63.4 to 77.8/mm2; p = 0.008), CNFL (20.0 to 20.2/mm2; p = 0.001), NSP (3 to 0/38; p < 0.001) and eGFRcyst-creat (128 to 120 ml/min; p = 0.015) post-bariatric surgery. Changes in (Δ) triglycerides were independently associated with ΔCNFL (ß = - 0.53; p = 0.024) and Δsystolic blood pressure (ß = 0.62;p = 0.017), and %excess BMI loss (ß = - 0.004; p = 0.018) were associated with ΔeGFRcyst-creat. There was no significant change in NDS, VPT, CPT, WPT, NCS, uACR or retinopathy status. Glomerular hyperfiltration resolved in 42% of the 12 patients with this condition pre-operatively. CONCLUSION: Bariatric surgery results in improvements in small nerve fibres and glomerular hyperfiltration in obese people with T2D, which were associated with weight loss, triglycerides and systolic blood pressure, but with no change in retinopathy or uACR at 12 months.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Obesity, Morbid , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/surgery , Diabetic Neuropathies/etiology , Female , Humans , Male , Middle Aged , Obesity, Morbid/surgery , Prospective Studies
19.
Atherosclerosis ; 315: 131-137, 2020 12.
Article in English | MEDLINE | ID: mdl-33187671

ABSTRACT

BACKGROUND AND AIMS: The UK Simon Broome (SB) familial hypercholesterolaemia (FH) register previously reported 3-fold higher standardised mortality ratio for cardiovascular disease (CVD) in women compared to men from 2009 to 2015. Here we examined sex differences in CVD morbidity in FH by national linkage of the SB register with Hospital Episode Statistics (HES). METHODS: Of 3553 FH individuals in the SB register (aged 20-79 years at registration), 2988 (52.5% women) had linked HES records. Standardised Morbidity Ratios (SMbR) compared to an age and sex-matched UK general practice population were calculated [95% confidence intervals] for first CVD hospitalisation in HES (a composite of coronary heart disease (CHD), myocardial infarction (MI), stable or unstable angina, stroke, TIA, peripheral vascular disease (PVD), heart failure, coronary revascularisation interventions). RESULTS: At registration, men had significantly (p < 0.001) higher prevalence of previous CHD (24.8% vs 17.6%), previous MI (13.2% vs 6.3%), and were commenced on lipid-lowering treatment at a younger age than women (37.5 years vs 42.3 years). The SMbR for composite CVD was 6.83 (6.33-7.37) in men and 7.55 (6.99-8.15) in women. In individuals aged 30-50 years, SMbR in women was 50% higher than in men (15.04 [12.98-17.42] vs 10.03 [9.01-11.17]). In individuals >50 years, SMbR was 33% higher in women than men (6.11 [5.57-6.70] vs 4.59 [4.08-5.15]). CONCLUSIONS: Excess CVD morbidity due to FH remains markedly elevated in women at all ages, but especially those aged 30-50 years. This highlights the need for earlier diagnosis and optimisation of lipid-lowering risk factor management for all FH patients, with particular attention to young women with FH.


Subject(s)
Hyperlipoproteinemia Type II , Adult , Female , Hospital Records , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Male , Middle Aged , Retrospective Studies , Risk Factors , Sex Characteristics , United Kingdom/epidemiology
20.
Atherosclerosis ; 313: 126-136, 2020 11.
Article in English | MEDLINE | ID: mdl-33045618

ABSTRACT

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes Coronavirus Disease 2019 (COVID-19) has resulted in a pandemic. SARS-CoV-2 is highly contagious and its severity highly variable. The fatality rate is unpredictable but is amplified by several factors including advancing age, atherosclerotic cardiovascular disease, diabetes mellitus, hypertension and obesity. A large proportion of patients with these conditions are treated with lipid lowering medication and questions regarding the safety of continuing lipid-lowering medication in patients infected with COVID-19 have arisen. Some have suggested they may exacerbate their condition. It is important to consider known interactions with lipid-lowering agents and with specific therapies for COVID-19. This statement aims to collate current evidence surrounding the safety of lipid-lowering medications in patients who have COVID-19. We offer a consensus view based on current knowledge and we rated the strength and level of evidence for these recommendations. Pubmed, Google scholar and Web of Science were searched extensively for articles using search terms: SARS-CoV-2, COVID-19, coronavirus, Lipids, Statin, Fibrates, Ezetimibe, PCSK9 monoclonal antibodies, nicotinic acid, bile acid sequestrants, nutraceuticals, red yeast rice, Omega-3-Fatty acids, Lomitapide, hypercholesterolaemia, dyslipidaemia and Volanesorsen. There is no evidence currently that lipid lowering therapy is unsafe in patients with COVID-19 infection. Lipid-lowering therapy should not be interrupted because of the pandemic or in patients at increased risk of COVID-19 infection. In patients with confirmed COVID-19, care should be taken to avoid drug interactions, between lipid-lowering medications and drugs that may be used to treat COVID-19, especially in patients with abnormalities in liver function tests.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Hyperlipidemias/complications , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Humans , Hyperlipidemias/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , SARS-CoV-2 , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...