Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Proc Natl Acad Sci U S A ; 121(6): e2309243121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289950

ABSTRACT

Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.


Subject(s)
Dermatitis, Atopic , Eosinophilia , Staphylococcal Infections , Animals , Mice , Eosinophils/metabolism , Staphylococcus aureus/metabolism , Peptide Hydrolases/metabolism , Skin/metabolism , Dermatitis, Atopic/metabolism , Staphylococcal Infections/metabolism , Cellulitis/metabolism , Cellulitis/pathology , Inflammation/metabolism
2.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37875111

ABSTRACT

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carbon , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Methotrexate/pharmacology , Methotrexate/metabolism , Methotrexate/therapeutic use , Neoplasms/drug therapy , Proteolysis Targeting Chimera , Tetrahydrofolate Dehydrogenase/metabolism
4.
Haematologica ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031763

ABSTRACT

Acute lymphoblastic leukemia (ALL) is an aggressive leukemia which can be derived from either T-cell or B-cell precursors. With current treatments, the survival rate is high, but the treatments are highly toxic with severe side effects. Individual mutations in IL7Rssand RAS pathways have been previously shown to be prevalent in ALL and especially in relapsed patients. The relationship of IL-7R77and RAS was investigated by transducing immature mouse thymocytes with the combination of these mutants. The resultant ALL cells were analyzed to identify the regulators and the oncoproteins that are upregulated or downregulated by the combination of IL7Rα with NRAS. Leukemia cells showed a significant increase in IL7Rw-mediated BCL2 expression, and an increase in MYC protein levels, was mainly induced by NRAS signaling. MYC was both necessary and sufficient to replace mutant NRAS and drugs targeting the MYC pathway showed a therapeutic benefit in IL-7R7/NRAS T-ALL. We suggest that MYC protein stability can be regulated by PLK-1 kinase, which was increased mainly by the NRAS signal. These studies identify novel pathways of oncogenesis and new targets for intervention that could lead to better therapeutic development.

5.
Gut Pathog ; 15(1): 28, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322488

ABSTRACT

BACKGROUND: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS: The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION: Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.

6.
J Vis Exp ; (196)2023 06 09.
Article in English | MEDLINE | ID: mdl-37358271

ABSTRACT

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice. To achieve successful outcomes, a series of coordinated steps involving the simultaneous manipulation of different types of cells must be carefully performed. Although these are very well-established procedures, the lack of a common source in the literature often means a series of optimizations are required, which can be time-consuming. This protocol has been shown to be efficient in transducing primary thymocytes followed by differentiation on OP9-DL4 cells. Detailed here is a protocol that can serve as a quick and optimized guide for the co-culture of retrovirally transduced thymocytes on OP9-DL4 stromal cells.


Subject(s)
Leukemia, T-Cell , Thymocytes , Mice , Animals , Thymocytes/metabolism , Coculture Techniques , Cell Differentiation/physiology , Stromal Cells , Mice, Transgenic , Oncogenes , Leukemia, T-Cell/genetics , Leukemia, T-Cell/metabolism
7.
Front Immunol ; 14: 1021824, 2023.
Article in English | MEDLINE | ID: mdl-37153622

ABSTRACT

Mucosal delivery of IL-27 has been shown to have a therapeutic benefit in murine models of inflammatory bowel disease (IBD). The IL-27 effect was associated with phosphorylated STAT1 (pSTAT1), a product of IL27 receptor signaling, in bowel tissue. To determine whether IL-27 acted directly on colonic epithelium, murine colonoids and primary intact colonic crypts were shown to be unresponsive to IL-27 in vitro and to lack detectable IL-27 receptors. On the other hand, macrophages, which are present in inflamed colon tissue, were responsive to IL-27 in vitro. IL-27 induced pSTAT1 in macrophages, the transcriptome indicated an IFN-like signature, and supernatants induced pSTAT1 in colonoids. IL-27 induced anti-viral activity in macrophages and MHC Class II induction. We conclude that the effects of mucosal delivery of IL-27 in murine IBD are in part based on the known effects of IL27 inducing immunosuppression of T cells mediated by IL-10. We also conclude that IL-27 has potent effects on macrophages in inflamed colon tissue, generating mediators that in turn act on colonic epithelium.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-27 , Mice , Animals , Interleukin-27/therapeutic use , Colon , Inflammatory Bowel Diseases/drug therapy , Macrophages , Epithelium
8.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675167

ABSTRACT

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.


Subject(s)
Guanine Nucleotide Exchange Factors , Immune System , Neoplasms , Humans , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotides , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes/immunology , Immune System/cytology , Immune System/immunology
9.
Cytokine ; 160: 156049, 2022 12.
Article in English | MEDLINE | ID: mdl-36201890

ABSTRACT

OVERVIEW: IL-7 is a member of the family of cytokines with four anti-parallel α helixes that bind Type I cytokine receptors. It is produced by stromal cells and is required for development and homeostatic survival of lymphoid cells. GENOMIC ARCHITECTURE: Interleukin 7 (IL7) human IL7: gene ID: 3574 on ch 8; murine Il7 gene ID: 16,196 on ch 3. PROTEIN: Precursor contains a signal sequence, mature human IL-7 peptide 152aa, predicted 17.4kd peptide, glycosylated resulting in 25kd. Crystal structure: http://www.rcsb.org/structure/3DI2. REGULATION OF IL-7 PRODUCTION: Major producers are stromal cells in thymus, bone marrow and lymphoid organs but also reported in other tissues. Production is primarily constitutive but reported to be affected by IFNγ and other factors. IL-7 RECEPTORS: Two chains IL-7Rα (IL-7R) and γc (IL-2RG). Human IL-7R: gene ID 3575 on ch 5; human IL2RG: gene ID 3561 on ch X; mouse IL-7R: gene ID 16,197 on ch 15; murine Il2rg gene ID 16,186 on ch X. Member of γc family of receptors for cytokines IL-2, -4, -9, -15, and -21. Primarily expressed on lymphocytes but reports of other cell types. Expression in T-cells downregulated by IL-7. Low expression on Tregs, no expression on mature B-cells. Crystal structure: http://www.rcsb.org/structure/3DI2. IL-7 RECEPTOR SIGNAL TRANSDUCTION PATHWAYS: Major signals through JAK1, JAK3 to STAT5 and through non-canonical STAT3, STAT1, PI3K/AKT and MEK/ERK pathways. BIOLOGICAL ACTIVITY OF IL-7: Required for survival of immature thymocytes, naïve T-cells, memory T-cells, pro-B-cells and innate lymphocytes. Pharmacological treatment with IL-7 induces expansion of naïve and memory T-cells and pro-B-cells. ABNORMALITIES OF THE IL-7 PATHWAY IN DISEASE: Deficiencies in the IL-7 pathway in humans and mice result in severe combined immunodeficiency due to lymphopenia. Excessive signaling of the pathway in mice drives autoimmune diseases and in humans is associated with autoimmune syndromes including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, atopic dermatitis and asthma. Mutations in the IL-7 receptor pathway drive acute lymphoblastic leukemia. CLINICAL APPLICATIONS: IL-7 has been evaluated in patients with cancer and shown to expand lymphocytes. It accelerated lymphocyte recovery after hematopoietic stem cell transfer, and increased lymphocyte counts in AIDS patients and sepsis patients. Monoclonal antibodies blocking the IL-7 receptor are being evaluated in autoimmune diseases. Cytotoxic monoclonals are being evaluated in acute lymphoblastic leukemia. Drugs blocking the signal transduction pathway are being tested in autoimmunity and acute lymphoblastic leukemia.


Subject(s)
Autoimmune Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Antibodies, Monoclonal , Humans , Interleukin-2/metabolism , Interleukin-7/pharmacology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Sorting Signals , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism
10.
Nat Immunol ; 23(8): 1133, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35835963
11.
Biology (Basel) ; 11(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336801

ABSTRACT

A treatment with direct healing effects on the gastrointestinal epithelial barrier is desirable for inflammatory bowel disease (IBD). Interleukin-27 (IL-27) is an immunoregulatory cytokine, and oral delivery is an effective treatment in murine models of IBD. We aimed to define IL-27 effects on the human gastrointestinal epithelial barrier. We characterised gene and protein expression of permeability mediators in a human colon-derived organoid model. Functional permeability was determined in an organoid-derived 2D monolayer by transepithelial electrical resistance. IL-27 effects on epithelial innate immune responses were assessed through expression of cytokines, anti-microbial peptides and MUC genes. IL-27 effects on wound healing and proliferation were determined in human colon epithelial cell lines. IL-27 led to restoration of permeability regulation following inflammatory cytokine insult (p = 0.001), associated with differential expression of tight junction mediators with decrease in claudin 2 (p = 0.024) and increase in claudin 4 (p < 0.001), E-cadherin (p < 0.001) and zona occludens (p = 0.0014). IL-27 evoked differential gene expression of epithelial-derived innate immune responses (reduced IL1B and IL18, and increased IL33, HBD1, MUC1 and MUC2; p < 0.012). IL-27 induced epithelial barrier wound healing through restitution (p < 0.001), and increased proliferation (p < 0.001) following injury. Overall, IL-27 provokes mucosal healing of the human gastrointestinal epithelial barrier.

12.
Science ; 375(6583): 859-863, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35201883

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are innate immune effectors that contribute to host defense. Whether ILC3 functions are stably modified after pathogen encounter is unknown. Here, we assess the impact of a time-restricted enterobacterial challenge to long-term ILC3 activation in mice. We found that intestinal ILC3s persist for months in an activated state after exposure to Citrobacter rodentium. Upon rechallenge, these "trained" ILC3s proliferate, display enhanced interleukin-22 (IL-22) responses, and have a superior capacity to control infection compared with naïve ILC3s. Metabolic changes occur in C. rodentium-exposed ILC3s, but only trained ILC3s have an enhanced proliferative capacity that contributes to increased IL-22 production. Accordingly, a limited encounter with a pathogen can promote durable phenotypic and functional changes in intestinal ILC3s that contribute to long-term mucosal defense.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Lymphocyte Activation , Lymphocytes/immunology , Adaptive Immunity , Animals , Cell Proliferation , Female , Immunity, Innate , Immunologic Memory , Interleukins/metabolism , Intestines/immunology , Listeria monocytogenes , Listeriosis/immunology , Lymphocytes/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Oxygen Consumption , RNA-Seq , Reinfection/immunology , Interleukin-22
13.
Adv Biol Regul ; 80: 100788, 2021 05.
Article in English | MEDLINE | ID: mdl-33578108

ABSTRACT

The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver. However mutant IL-7R alone was insufficient to transform primary T cell progenitors, indicating that cooperating mutations were required. Here we review evidence for additional oncogenic mutations in the IL-7 pathway. We discuss several oncogenes, loss of tumor suppressor genes and epigenetic effects that can cooperate with mutant IL-7 receptor. These include NRas, HOXA, TLX3, Notch 1, Arf, PHF6, WT1, PRC, PTPN2 and CK2. As new therapeutics targeting the IL-7 pathway are developed, combination with agents directed to cooperating pathways offer hope for novel therapies for ALL.


Subject(s)
Gene Expression Regulation, Leukemic , Interleukin-7/genetics , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Interleukin-7/genetics , Signal Transduction/genetics , Casein Kinase II/genetics , Casein Kinase II/metabolism , Child , Epigenesis, Genetic , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Interleukin-7/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Interleukin-7/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism
14.
Sci Immunol ; 5(48)2020 06 05.
Article in English | MEDLINE | ID: mdl-32503875

ABSTRACT

Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.


Subject(s)
Candidiasis, Oral/immunology , Epithelial Cells/immunology , Interleukin-17/immunology , Interleukins/immunology , Mouth Mucosa/immunology , STAT3 Transcription Factor/immunology , Animals , Candida albicans/immunology , Female , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , Interleukin-22
15.
Leukemia ; 34(1): 35-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31439943

ABSTRACT

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Interleukin-7/antagonists & inhibitors , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Xenograft Model Antitumor Assays
16.
Oncogene ; 39(5): 975-986, 2020 01.
Article in English | MEDLINE | ID: mdl-31586130

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis in patients with resistant or relapsed disease. Although NOTCH is a known driver in T-ALL, its clinical inhibition has significant limitations. Our previous studies suggested that NRARP, a negative regulator of Notch signaling, could have a suppressive role in T-ALL. Here, we report that NRARP levels are significantly increased in primary T-ALL cells suggesting that NRARP is not sufficient to block NOTCH oncogenic signals. Interestingly, although NRARP overexpression blocks NOTCH1 signaling and delays the proliferation of T-ALL cells that display high levels of Notch1 signaling, it promotes the expansion of T-ALL cells with lower levels of Notch1 activity. We found that NRARP interacts with lymphoid enhancer-binding factor 1 (LEF1) and potentiates Wnt signaling in T-ALL cells with low levels of Notch. Together these results indicate that NRARP plays a dual role in T-ALL pathogenesis, regulating both Notch and Wnt pathways, with opposite functional effects depending on Notch activity. Consistent with this hypothesis, mice transplanted with T-cells co-expressing NOTCH1 and NRARP develop leukemia later than mice transplanted with T-NOTCH1 cells. Importantly, mice transplanted with T-cells overexpressing NRARP alone developed leukemia with similar kinetics to those transplanted with T-NOTCH1 cells. Our findings uncover a role for NRARP in T-ALL pathogenesis and indicate that Notch inhibition may be detrimental for patients with low levels of Notch signaling, which would likely benefit from the use of Wnt signaling inhibitors. Importantly, our findings may extend to other cancers where Notch and Wnt play a role.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Notch/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Humans , Up-Regulation
17.
Nat Immunol ; 20(12): 1584-1593, 2019 12.
Article in English | MEDLINE | ID: mdl-31745336

ABSTRACT

The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.


Subject(s)
Immunotherapy/trends , Interleukin-7/metabolism , Neoplasms/immunology , Receptors, Interleukin-7/metabolism , T-Lymphocytes/physiology , Animals , Cell Differentiation , Cell Survival , Homeostasis , Humans , Interleukin-7/immunology , Receptors, Interleukin-7/immunology
18.
Nat Commun ; 10(1): 4517, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586069

ABSTRACT

Neonatal inflammatory diseases are associated with severe morbidity, but the inflammatory factors underlying them and their potential effector mechanisms are poorly defined. Here we show that necrotizing enterocolitis in neonate mice is accompanied by elevation of IL-23 and IL-22 and decreased production of pancreatic enzymes. These phenotypes are mirrored in neonate mice overexpressing IL-23 in CX3CR1+ myeloid cells or in keratinocytes. The mice fail to grow and die prematurely, displaying systemic inflammation, nutrient malabsorption and decreased expression of intestinal and pancreatic genes mediating digestion and absorption of carbohydrates, proteins, and lipids. Germ-free environment improves, and genetic ablation of IL-22 restores normal growth in mice overexpressing IL-23. Mechanistically, IL-22 acts directly at the level of pancreatic acinar cells to decrease expression of the pancreas associated transcription factor 1a (PTF1a). These results show that augmented production of IL-23 and IL-22 in early life has a negative impact on pancreatic enzyme secretion and food absorption.


Subject(s)
Enterocolitis, Necrotizing/immunology , Interleukin-23/metabolism , Interleukins/metabolism , Pancreas/enzymology , Transcription Factors/metabolism , Acinar Cells/enzymology , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Enterocolitis, Necrotizing/pathology , Humans , Interleukin-23/genetics , Interleukin-23/immunology , Interleukins/genetics , Interleukins/immunology , Intestinal Absorption/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Keratinocytes , Mice , Mice, Knockout , Myeloid Cells , Pancreas/cytology , Primary Cell Culture , Interleukin-22
19.
Eur Respir J ; 54(1)2019 07.
Article in English | MEDLINE | ID: mdl-31196943

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.


Subject(s)
Emphysema/etiology , Interleukins/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Interleukin/physiology , Airway Remodeling , Airway Resistance , Animals , Emphysema/pathology , Female , Humans , Immunity, Innate , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Tobacco Products , Interleukin-22
20.
Proc Natl Acad Sci U S A ; 116(22): 10917-10926, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31088972

ABSTRACT

T cell cytokines contribute to immunity against Staphylococcus aureus, but the predominant T cell subsets involved are unclear. In an S. aureus skin infection mouse model, we found that the IL-17 response was mediated by γδ T cells, which trafficked from lymph nodes to the infected skin to induce neutrophil recruitment, proinflammatory cytokines IL-1α, IL-1ß, and TNF, and host defense peptides. RNA-seq for TRG and TRD sequences in lymph nodes and skin revealed a single clonotypic expansion of the encoded complementarity-determining region 3 amino acid sequence, which could be generated by canonical nucleotide sequences of TRGV5 or TRGV6 and TRDV4 However, only TRGV6 and TRDV4 but not TRGV5 sequences expanded. Finally, Vγ6+ T cells were a predominant γδ T cell subset that produced IL-17A as well as IL-22, TNF, and IFNγ, indicating a broad and substantial role for clonal Vγ6+Vδ4+ T cells in immunity against S. aureus skin infections.


Subject(s)
Interleukin-17/physiology , Staphylococcal Infections/immunology , Staphylococcus aureus/pathogenicity , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Humans , Lymph Nodes/immunology , Mice , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...