Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Stem Cells ; 35(12): 2403-2416, 2017 12.
Article in English | MEDLINE | ID: mdl-28833887

ABSTRACT

Insulin is one of the standard components used to culture primary neurospheres. Although it stimulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not survival or self-renewal, of adult NSCs. This effect is mediated by insulin receptor substrate 2 (IRS2) and subsequent activation of the protein kinase B (or Akt), leading to increased activity of the G1-phase cyclin-dependent kinase 4 (Cdk4) and cell cycle progression. Neurospheres isolated from Irs2-deficient mice are reduced in size and fail to expand in culture and this impaired proliferation is rescued by introduction of a constitutively active Cdk4 (Cdk4R24C/R24C ). More interestingly, activation of the IRS2/Akt/Cdk4 signaling pathway by insulin is also necessary for the generation in vitro of neurons and oligodendrocytes from NSCs. Furthermore, the IRS2/Cdk4 pathway is also required for neuritogenesis, an aspect of neuronal maturation that has not been previously linked to regulation of the cell cycle. Differentiation of NSCs usually follows exit from the cell cycle due to increased levels of CDK-inhibitors which prevent activation of CDKs. In contrast, our data indicate that IRS2-mediated Cdk4 activity in response to a mitogen such as insulin promotes terminal differentiation of adult NSCs. Stem Cells 2017;35:2403-2416.


Subject(s)
Cell Differentiation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Insulin/pharmacology , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , G1 Phase/drug effects , Insulin Receptor Substrate Proteins/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Phosphorylation/drug effects
2.
Dev Dyn ; 245(2): 166-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26505171

ABSTRACT

BACKGROUND: Planar cell polarity (PCP) in the Drosophila eye is generated when immature ommatidial preclusters acquire opposite chirality in the dorsal and ventral halves of the eye imaginal disc and rotate 90 ° toward the equator. The scabrous (sca) gene is involved in R8 differentiation and in the correct spacing of ommatidial clusters in eye imaginal discs, but it was also suggested to be required during ommatidial rotation. However, no clear relationships between sca and other genes involved in the process were established. RESULTS: To explore the role of Sca in PCP establishment, we performed an RNAi-based modifier genetic screen using the rough eye phenotype of sca-overexpressing flies. We found that sca overexpression mainly affects R3/R4 cell specification as it was reported in Notch mutants. Of the 86 modifiers identified in the screen, genes encoding components of Notch signaling and proteins involved in intracellular transport were of particular interest. CONCLUSIONS: These and other results obtained with a reporter line of Notch activity indicate that sca overexpression antagonizes Notch signaling in the Drosophila eye, and are inconsistent with Sca being an ommatidial rotation-specific factor. We also found that microtubule motors and other proteins involved in intracellular transport are related with Sca function.


Subject(s)
Cell Lineage/genetics , Compound Eye, Arthropod/metabolism , Drosophila Proteins/genetics , Glycoproteins/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Animals , Animals, Genetically Modified , Cell Differentiation , Drosophila Proteins/metabolism , Drosophila melanogaster , Glycoproteins/metabolism , Phenotype
3.
PLoS One ; 7(4): e36405, 2012.
Article in English | MEDLINE | ID: mdl-22558462

ABSTRACT

The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway.


Subject(s)
Bone Morphogenetic Proteins/pharmacology , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Mesoderm/cytology , Receptors, Notch/metabolism , Signal Transduction/drug effects , Tretinoin/pharmacology , Animals , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Mesoderm/drug effects , Mice , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/metabolism , Transcriptome/drug effects
4.
Fly (Austin) ; 5(2): 88-101, 2011.
Article in English | MEDLINE | ID: mdl-21441778

ABSTRACT

Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.


Subject(s)
Cell Adhesion/genetics , Drosophila Proteins/metabolism , Drosophila/metabolism , ErbB Receptors/metabolism , Receptors, Invertebrate Peptide/metabolism , Signal Transduction , rho GTP-Binding Proteins/metabolism , Animals , Cell Polarity/genetics , Compound Eye, Arthropod/cytology , Compound Eye, Arthropod/metabolism , Compound Eye, Arthropod/ultrastructure , Drosophila/cytology , Drosophila/genetics , Drosophila Proteins/genetics , ErbB Receptors/genetics , Phenotype , Receptors, Invertebrate Peptide/genetics , rho GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL