Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 200: 84-96, 2019 05.
Article in English | MEDLINE | ID: mdl-30844539

ABSTRACT

This paper presents a comprehensive investigation of an extended method to determine composition of materials by scanning transmission electron microscopy (STEM) high angle annular darkfield (HAADF) images and using complementary multislice simulations. The main point is to understand the theoretical capabilities of the algorithm and address the intrinsic limitations of using STEM HAADF intensities for composition determination. A special focus is the potential of the method regarding single-atom accuracy. All-important experimental parameters are included into the multislice simulations to ensure the best possible fit between simulation and experiment. To demonstrate the capabilities of the extended method, results for three different technical important semiconductor samples are presented. Overall the method shows a high lateral resolution combined with a high accuracy towards single-atom accuracy.

2.
Micron ; 79: 1-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26280278

ABSTRACT

The physical properties of semiconductor quantum wells (QW), like (GaIn)As/GaAs, are significantly influenced by the interface morphology. In the present work, high angle annular dark field imaging in (scanning) transmission electron microscopy ((S)TEM), in combination with contrast simulation, is used to address this question at atomic resolution. The (GaIn)As QWs were grown with metal organic vapor phase epitaxy on GaAs (001) substrates under different, precisely controlled conditions. In order to be able to compare different samples, a carefully applied method to gain reliable results from high resolution STEM micrographs was used. The thickness gradient of the TEM samples, caused by sample preparation, was compensated by the intensity of group V atomic columns, where no alloying takes place. After that, the In concentration map was plotted for the investigated regions based on the intensity of the group III atomic columns. The composition maps show that the Indium distribution across the quantum well is not homogeneous. The growth temperature of the QW can greatly influence the composition fluctuation and the interface morphology, with higher growth temperature resulting in larger composition fluctuations in the QWs and slightly wider interfaces, i.e. larger In-segregation. Growth interruptions are shown to significantly homogenize the elemental depth profile especially along the (GaIn)As/GaAs interface and hence have a positive effect on interface smoothness.

SELECTION OF CITATIONS
SEARCH DETAIL
...