Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38575343

ABSTRACT

Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.


Subject(s)
Exploratory Behavior , Hypothalamic Hormones , Locus Coeruleus , Melanins , Neurons , Pituitary Hormones , Animals , Locus Coeruleus/metabolism , Locus Coeruleus/cytology , Locus Coeruleus/physiology , Melanins/metabolism , Hypothalamic Hormones/metabolism , Pituitary Hormones/metabolism , Male , Female , Mice , Neurons/physiology , Neurons/metabolism , Exploratory Behavior/physiology , Mice, Inbred C57BL , Receptors, Somatostatin/metabolism , Hypothalamus/cytology , Hypothalamus/metabolism , Hypothalamus/physiology
2.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Article in English | MEDLINE | ID: mdl-38570661

ABSTRACT

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Subject(s)
Astrocytes , Calcium Signaling , Hippocampus , Locus Coeruleus , Animals , Locus Coeruleus/physiology , Locus Coeruleus/cytology , Astrocytes/physiology , Mice , Hippocampus/physiology , Hippocampus/cytology , Male , Calcium Signaling/physiology , Female , Optogenetics , Mice, Transgenic , Neurons/physiology , Mice, Inbred C57BL , Calcium/metabolism
3.
Elife ; 122024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477670

ABSTRACT

Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via ß-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.


Subject(s)
Locus Coeruleus , Norepinephrine , Female , Male , Animals , Mice , Brain , Hippocampus , Gene Expression
4.
Nat Methods ; 20(9): 1426-1436, 2023 09.
Article in English | MEDLINE | ID: mdl-37474807

ABSTRACT

Genetically encoded indicators engineered from G-protein-coupled receptors are important tools that enable high-resolution in vivo neuromodulator imaging. Here, we introduce a family of sensitive multicolor norepinephrine (NE) indicators, which includes nLightG (green) and nLightR (red). These tools report endogenous NE release in vitro, ex vivo and in vivo with improved sensitivity, ligand selectivity and kinetics, as well as a distinct pharmacological profile compared with previous state-of-the-art GRABNE indicators. Using in vivo multisite fiber photometry recordings of nLightG, we could simultaneously monitor optogenetically evoked NE release in the mouse locus coeruleus and hippocampus. Two-photon imaging of nLightG revealed locomotion and reward-related NE transients in the dorsal CA1 area of the hippocampus. Thus, the sensitive NE indicators introduced here represent an important addition to the current repertoire of indicators and provide the means for a thorough investigation of the NE system.


Subject(s)
Locus Coeruleus , Norepinephrine , Animals , Mice , Locus Coeruleus/physiology , Hippocampus/physiology , Receptors, G-Protein-Coupled
5.
Nat Commun ; 13(1): 1824, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383160

ABSTRACT

The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress.


Subject(s)
Protein Biosynthesis , Stress, Psychological , Animals , Anxiety/genetics , Hippocampus/metabolism , Mice , RNA, Messenger/metabolism
7.
Nat Protoc ; 15(8): 2301-2320, 2020 08.
Article in English | MEDLINE | ID: mdl-32632319

ABSTRACT

The locus coeruleus (LC) is a region in the brainstem that produces noradrenaline and is involved in both normal and pathological brain function. Pupillometry, the measurement of pupil diameter, provides a powerful readout of LC activity in rodents, primates and humans. The protocol detailed here describes a miniaturized setup that can screen LC activity in rodents in real-time and can be established within 1-2 d. Using low-cost Raspberry Pi computers and cameras, the complete custom-built system costs only ~300 euros, is compatible with stereotaxic surgery frames and seamlessly integrates into complex experimental setups. Tools for pupil tracking and a user-friendly Pupillometry App allow quantification, analysis and visualization of pupil size. Pupillometry can discriminate between different, physiologically relevant firing patterns of the LC and can accurately report LC activation as measured by noradrenaline turnover. Pupillometry provides a rapid, non-invasive readout that can be used to verify accurate placement of electrodes/fibers in vivo, thus allowing decisions about the inclusion/exclusion of individual animals before experiments begin.


Subject(s)
Locus Coeruleus/physiology , Monitoring, Physiologic/instrumentation , Pupil/physiology , Animals , Mice , Mice, Inbred C57BL , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...