Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Helicobacter ; 29(4): e13108, 2024.
Article in English | MEDLINE | ID: mdl-39021274

ABSTRACT

BACKGROUND: Helicobacter pylori infection-associated gastric adenocarcinoma is influenced by various factors, including the digestive microbiota. Lactic acid bacteria role in digestive carcinogenesis has been discussed, and some Lactobacillaceae family species have been shown to act against H. pylori-induced inflammation and colonization. However, their effects on H. pylori-related carcinogenesis have not yet been studied. Lactobacillaceae family effects on the epithelial-to-mesenchymal transition (EMT), emergence of cells with cancer stem cell (CSC) properties and the pro-inflammatory response of gastric epithelial cells to H. pylori infection were investigated. MATERIALS AND METHODS: A co-culture model of AGS gastric epithelial cells infected with a carcinogenic strain of H. pylori associated with 18 different probiotic strains candidates were used. Different EMT indicators and CSC properties were studied, including quantification of the mesenchymal phenotype, tumorsphere formation, EMT marker expression, and tight junction evaluation with immunofluorescence microscopy. The effect of the strains on the pro-inflammatory response to H. pylori was also evaluated by quantifying interleukin-8 (IL-8) production using ELISA. RESULTS: Among the strains tested, Lactobacillus gasseri BIO6369 and Lacticaseibacillus rhamnosus BIO5326 induced a 30.6% and 38.4% reduction in the mesenchymal phenotype, respectively, caused a significant decrease in Snail and Zeb1 EMT marker expression and prevented the loss of tight junctions induced by H. pylori infection. A separate co-culture with a Boyden chamber maintained the effects induced by the two strains. H. pylori-induced IL-8 production was also significantly reduced in the presence of L. gasseri BIO6369 and L. rhamnosus BIO5326. CONCLUSION: Lactobacillus gasseri BIO6369 and L. rhamnosus BIO5326 strains decreased epithelial-to-mesenchymal transition and inflammation induced by H. pylori infection, suggesting that these species may have a protective effect against H. pylori-induced gastric carcinogenesis.


Subject(s)
Epithelial Cells , Epithelial-Mesenchymal Transition , Helicobacter Infections , Helicobacter pylori , Lacticaseibacillus rhamnosus , Lactobacillus gasseri , Probiotics , Stomach Neoplasms , Humans , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/physiology , Helicobacter pylori/pathogenicity , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Lacticaseibacillus rhamnosus/physiology , Epithelial Cells/microbiology , Coculture Techniques , Carcinogenesis
2.
Blood Adv ; 5(23): 5372-5386, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34555842

ABSTRACT

Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.


Subject(s)
Antineoplastic Agents , Lymphoma, B-Cell , Lymphoma, Non-Hodgkin , B-Lymphocytes , Cell Proliferation , Humans , Lymphoma, B-Cell/drug therapy , Tumor Microenvironment
3.
Neurobiol Aging ; 58: 239.e11-239.e20, 2017 10.
Article in English | MEDLINE | ID: mdl-28716533

ABSTRACT

Mutations in UBQLN2 have been associated with rare cases of X-linked juvenile and adult forms of amyotrophic lateral sclerosis (ALS) and ALS linked to frontotemporal dementia (FTD). Here, we report 1 known (c.1489C>T, p.Pro497Ser, P497S) and 3 novel (c.1481C>T, p.Pro494Leu, P494L; c.1498C>T, p.Pro500Ser, P500S; and c.1516C>G, p.Pro506Ala, P506A) missense mutations in the PXX domain of UBQLN2 in familial motor neuron diseases including ALS and spastic paraplegia (SP). A novel missense mutation (c.1462G>A, p.Ala488Thr, A488T) adjacent to this hotspot UBQLN2 domain was identified in a sporadic case of ALS. These mutations are conserved in mammals, are absent from ExAC and gnomAD browsers, and are predicted to be deleterious by SIFT in silico analysis. Patient lymphoblasts carrying a UBQLN2 mutation showed absence of ubiquilin-2 accumulation, disrupted binding with HSP70, and impaired autophagic pathway. Our results confirm the role of PXX repeat in ALS pathogenesis, show that UBQLN2-linked disease can manifest like a SP phenotype, evidence a highly reduced disease penetrance in females carrying UBQLN2 mutations, which is important information for genetic counseling, and underline the pivotal role of ubiquilin-2 in proteolysis regulation pathways.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cell Cycle Proteins/genetics , Frontotemporal Dementia/genetics , Genetic Association Studies , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mutation, Missense/genetics , Phenotype , Proteolysis , Spastic Paraplegia, Hereditary/genetics , Ubiquitins/genetics , Adaptor Proteins, Signal Transducing , Aged , Aged, 80 and over , Autophagy-Related Proteins , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Dimerization , Female , Humans , Male , Middle Aged , Protein Domains/genetics , Ubiquitins/chemistry , Ubiquitins/metabolism , X Chromosome Inactivation
4.
Hum Mutat ; 32(10): 1118-27, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21618648

ABSTRACT

Hereditary spastic paraplegias (HSP) constitute a heterogeneous group of neurodegenerative disorders characterized at least by slowly progressive spasticity of the lower limbs. Mutations in REEP1 were recently associated with a pure dominant HSP, SPG31. We sequenced all exons of REEP1 and searched for rearrangements by multiplex ligation-dependent probe amplification (MLPA) in a large panel of 175 unrelated HSP index patients from kindreds with dominant inheritance (AD-HSP), with either pure (n = 102) or complicated (n = 73) forms of the disease, after exclusion of other known HSP genes. We identified 12 different heterozygous mutations, including two exon deletions, associated with either a pure or a complex phenotype. The overall mutation rate in our clinically heterogeneous sample was 4.5% in French families with AD-HSP. The phenotype was restricted to pyramidal signs in the lower limbs in most patients but nine had a complex phenotype associating axonal peripheral neuropathy (= 5/11 patients) including a Silver-like syndrome in one patient, and less frequently cerebellar ataxia, tremor, dementia. Interestingly, we evidenced abnormal mitochondrial network organization in fibroblasts of one patient in addition to defective mitochondrial energy production in both fibroblasts and muscle, but whether these anomalies are directly or indirectly related to the mutations remains uncertain.


Subject(s)
Membrane Transport Proteins/genetics , Mitochondria/metabolism , Mutation , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Aged , Base Sequence , Child , Child, Preschool , Energy Metabolism , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation Rate , Pedigree , Phenotype , Sequence Deletion , Spastic Paraplegia, Hereditary/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL