Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Parasitol Res ; 120(9): 3273-3285, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363115

ABSTRACT

Leishmaniasis, included in the priority list of the WHO, remains as a neglected disease caused by parasites of the Leishmania genus. There is no vaccine available for human leishmaniasis, and the current treatment is based on old drugs that cause serious side effects. Herein, we initially studied the cellular distribution of the virulence factor gp63, the major metallopeptidase, in a virulent strain of Leishmania braziliensis, and then we measured the inhibitory effects of 1,10-phenanthroline-5,6-dione (phendione), and its metal complexes, [Cu(phendione)3](ClO4)2.4H2O and [Ag(phendione)2]ClO4, on both cellular and extracellular metallopeptidases produced by promastigotes. The action of the three compounds on parasite viability and on parasite-macrophage interaction was also determined. Gp63 molecules were detected in several parasite compartments, including the cytoplasm, the membrane lining the cell body and flagellum, and in the flagellar pocket, which explains the presence of gp63 in the culture medium. The test compounds inhibited parasite metallopeptidases in a typical dose-dependent manner, and they also caused a significant and irreversible inhibition of parasite motility. Moreover, the pre-treatment of promastigotes with the test compounds induced a decrease in the association index with macrophages. Collectively, phendione and its Cu(II) and Ag(I) complexes are excellent prototypes for the development of new anti-L. braziliensis drugs.


Subject(s)
Leishmania braziliensis , Macrophages/parasitology , Phenanthrolines , Copper , Humans , Leishmania braziliensis/drug effects , Phenanthrolines/pharmacology , Silver
3.
Article in English | MEDLINE | ID: mdl-31131262

ABSTRACT

Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.


Subject(s)
Exercise Therapy/methods , Immunomodulation , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/therapy , Physical Conditioning, Animal , Animals , Cytokines/analysis , Disease Models, Animal , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Mice, Inbred BALB C , Parasite Load , Th1 Cells/immunology , Treatment Outcome
4.
PLoS One ; 9(10): e109672, 2014.
Article in English | MEDLINE | ID: mdl-25340550

ABSTRACT

Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the induction of parasite apoptosis and shows promising therapeutic option by oral or local routes in leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/parasitology , Naphthoquinones/pharmacology , Pterocarpans/pharmacology , Animals , Cricetinae , Female , Leishmaniasis, Cutaneous/pathology , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mesocricetus , Phosphatidylserines/metabolism
5.
Acta Trop ; 111(3): 247-54, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19433049

ABSTRACT

Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.


Subject(s)
Casein Kinase II/biosynthesis , Leishmania tropica/enzymology , Platelet Activating Factor/metabolism , Protozoan Proteins/biosynthesis , Animals , Cells, Cultured , Female , Gene Expression Regulation, Enzymologic , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...