Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(4): 1689-1703, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37931005

ABSTRACT

Short aromatic peptides have been observed to assemble into diverse nanostructures, including fibers, tubes, and vesicles, using computational techniques. However, the computational studies have employed top-down coarse-grained (CG) models, which are unable to capture the assembly along with the conformation, packing, and organization of the peptides within the aggregates in a manner that is consistent with the all atom (AA) representation of the molecules. In this study, a hybrid structure- and force-based approach is adapted to develop a bottom-up CG force field of triphenylalanine using reference data from AA trajectories. This approach follows a flexible methodology to approximate the chemical complexity of the underlying AA representation with the chosen CG representation. Two CG models are developed with distinct representations of the aromatic side chains. The first uses a simple single-bead representation, while the second uses a three-bead representation to more accurately represent the planarity of the ring. The one-bead model yields nanorods, while the three-bead model results in nanospheres. The role of different chemical groups in the assembly of nanostructures is identified, along with the importance of steric effects on the packing of the peptides within assemblies.


Subject(s)
Molecular Dynamics Simulation , Nanostructures , Peptides/chemistry , Molecular Conformation
2.
J Mol Graph Model ; 125: 108624, 2023 12.
Article in English | MEDLINE | ID: mdl-37699315

ABSTRACT

Multicomponent biomolecular aggregates, i.e., systems consisting of more than one type of biomolecular component co-assembling into one aggregate, provide an interesting design space for engineering unique biomaterials. In this study, we examine the co-assembly of two lipomimetic oligopeptide block copolymers selected for their lipid-like amphiphilicity and highly similar architectures into nanofibers via coarse-grained MD simulations. We focus on the behavior of these peptides due to incremental differences in size by selecting two peptides that differ in length by exactly one amino acid residue. We find that the longer peptide sequence displays greater self-association properties.


Subject(s)
Molecular Dynamics Simulation , Oligopeptides , Amino Acid Sequence , Amino Acids , Biocompatible Materials
3.
J Chem Phys ; 158(11): 114105, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948821

ABSTRACT

Protein mimics such as peptoids form self-assembled nanostructures whose shape and function are governed by the side chain chemistry and secondary structure. Experiments have shown that a peptoid sequence with a helical secondary structure assembles into microspheres that are stable under various conditions. The conformation and organization of the peptoids within the assemblies remains unknown and is elucidated in this study via a hybrid, bottom-up coarse-graining approach. The resultant coarse-grained (CG) model preserves the chemical and structural details that are critical for capturing the secondary structure of the peptoid. The CG model accurately captures the overall conformation and solvation of the peptoids in an aqueous solution. Furthermore, the model resolves the assembly of multiple peptoids into a hemispherical aggregate that is in qualitative agreement with the corresponding results from experiments. The mildly hydrophilic peptoid residues are placed along the curved interface of the aggregate. The composition of the residues on the exterior of the aggregate is determined by two conformations adopted by the peptoid chains. Hence, the CG model simultaneously captures sequence-specific features and the assembly of a large number of peptoids. This multiscale, multiresolution coarse-graining approach could help in predicting the organization and packing of other tunable oligomeric sequences of relevance to biomedicine and electronics.


Subject(s)
Peptoids , Peptoids/chemistry , Protein Structure, Secondary , Water
4.
Langmuir ; 39(9): 3439-3449, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802670

ABSTRACT

Spherical surfaces bearing mobile, solvophilic chains are ubiquitous. These systems are found in nature in the form of biological cells bearing carbohydrate chains, or glycans, or in drug delivery systems such as vesicles bearing polyethylene glycol chains and carrying therapeutic molecules. The self-organization of the chains on the spherical surface dictates the stability and functionality of the latter and is determined by key factors such as the interchain, chain-surface interactions, excluded volume, concentration of the chains, and external environment. This study develops a fundamental understanding of how these factors control the organization of mobile, solvophilic chains while preserving the stability of the spherical surface. To that end, the study focuses on the organization of polyamidoamine dendrons on the surface of a dipalmitoylphosphatidylcholine-based vesicle. The excluded volume of the chains and the external environment are, respectively, controlled via the dendron generation and the pH. For acidic and basic pH environments, the dendrons are extended away from the surface. As a consequence, the vesicles are able to accommodate significantly higher concentration of dendrons on their surface without rupturing. For acidic pH, the dendrons change their conformation to avoid intermeshing. However for basic pH, the dendrons only change their conformation at extremely high concentrations due to excluded volume effects. These conformational changes are attributed to the number of protonated dendron residues that vary as a function of pH. The results from this study will advance diverse subdisciplines within cell biology, biomedicine, and pharmaceuticals.


Subject(s)
Dendrimers , Dendrimers/chemistry , Polyelectrolytes , Anthracenes , Polyethylene Glycols/chemistry
5.
J Chem Phys ; 156(5): 054108, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135284

ABSTRACT

A comprehensive framework of characterizing complex self-assembled structures with a set of orientational order parameters is presented. It is especially relevant in the context of using anisotropic building blocks with various symmetries. Two classes of tensor order parameters are associated with polyhedral nematic and bond orientational order. For the latter, a variation of classical bond order parameters (BOPs) is introduced, which takes advantage of the symmetry of constituent particles and/or expected crystalline phases. These symmetrized BOPs can be averaged over an entire system or assigned locally to an individual bond. By combining that with the bond percolation procedure, one is able to identify coherent domains within a self-assembled structure. As a demonstration of the proposed framework, we apply it to a simulated hybrid system that combines isotropic and patchy particles with octahedral symmetry. Not only does the methodology allow one to identify individual crystalline domains but also it detects coherent clusters of a peculiar compact amorphous structure that is not space-filling and lacks any long-range order.

6.
J Chem Phys ; 156(2): 024501, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35032996

ABSTRACT

Brownian dynamics is used to study self-assembly in a hybrid system of isotropic particles (IPs), combined with anisotropic building blocks that represent special "designer particles." Those are modeled as spherical patchy particles (PPs) with binding only allowed between their patches and IPs. In this study, two types of PPs are considered: Octahedral PPs (Oh-PPs) and Square PPs (Sq-PPs), with octahedral and square arrangements of patches, respectively. The self-assembly is additionally facilitated by the simulated annealing procedure. The resultant structures are characterized by a combination of local correlations in cubatic ordering and a symmetry-specific variation of bond orientation order parameters (SymBOPs). By varying the PP/IP size ratio, we detected a sharp crossover between two distinct morphologies in both types of systems. High symmetry phases, NaCl crystal for Oh-PP and square lattice for Sq-PP, are observed for larger size ratios. For the smaller ones, the dominant morphologies are significantly different, e.g., Oh-PPs form a compact amorphous structure with predominantly face-to-face orientation of neighboring PPs. Unusually, for a morphology without a long-range order, it is still possible to identify well organized coherent clusters of this structure, thanks to the adoption of our SymBOP-based characterization.

7.
Phys Chem Chem Phys ; 24(3): 1553-1568, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34940778

ABSTRACT

Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.


Subject(s)
Oligopeptides/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Protein Conformation , Protein Multimerization , Water/chemistry
8.
Nanoscale Adv ; 3(3): 725-737, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133832

ABSTRACT

Fundamental bacterial functions like quorum sensing can be targeted to replace conventional antibiotic therapies. Nanoparticles or vesicles that bind interfacially to charged biomolecules could be used to block quorum sensing pathways in bacteria. Towards this goal, dendronized vesicles (DVs) encompassing polyamidoamine dendron-grafted amphiphiles (PDAs) and dipalmitoyl-sn-glycero-3-phosphocholine lipids are investigated using the molecular dynamics simulation technique in conjunction with an explicit solvent coarse-grained force field. The key physical factors determining the stability of DVs as a function of the dendron generation and relative concentration are identified. The threshold concentration of each dendron generation that yields stable DVs is determined. Dendrons with lower generations rupture the DVs at high relative concentrations due to the electrostatic repulsions between the terminally protonated amines. Whereas, dendrons with intermediate generations demonstrate a mushroom-to-brush transition. Conformational changes in the dendrons expand the outer DV surface, resulting in instability in the DV bilayer. DVs encompassing dendrons with higher generations incur stresses on the bilayer due to their high charge density and spontaneous curvature. The self-organization of PDAs on the DV surface are examined to understand how the asymmetric stresses are minimized across the bilayer. A set of conditions are determined to be conducive for the formation of a single cluster of PDAs that decorates the DV surface like a mesh. Results from this study can potentially guide the design and synthesis of nanoparticles which target quorum sensing pathways in bacteria towards the prevention and treatment of bacterial infections. Furthermore, these nanoparticles can be used in diverse applications in biomedicine, energy or electronics that require synthetic dendronized cells or the adsorption and transport of charged species.

9.
J Phys Condens Matter ; 33(5)2020 11 05.
Article in English | MEDLINE | ID: mdl-32942264

ABSTRACT

Peptide assembly is an increasingly important field of study due to the versatility, tunability and vast design space of amino acid based biomolecular assemblies. Peptides can be precisely engineered to possess various useful properties such as the ability to form supramolecular assemblies, desired response to pH, or thermal stability. These peptide supramolecular assemblies have diverse morphologies including vesicles, nanotubes, nanorods and ribbons. Of specific interest is the domain of engineering peptides that aggregate into spherical nanostructures due to their encapsulation properties: the ability to hold, transport and release chemical payloads in a controllable manner. This is invaluable to the fields of nanomedicine and targeted drug delivery. In this review, the state of the art in the domain of peptide-based vesicles and nanospheres is summarized. Specifically, an overview of the assembly of peptides into nanovesicles and nanospheres is provided. Both aromatic as well as aliphatic side chain amino acids are discussed. The domain of aromatic side chained amino acid residues is largely dominated by phenylalanine based peptides and variants thereof. Tyrosine also demonstrates similar aggregation properties. Both experimentally and computationally driven approaches are discussed. The domain of aliphatic amino acid residues based vesicles and droplets is broader, and details multiple amino acid residues such as alanine, valine, lysine, glycine, proline, and aspartic acid. Finally, a discussion on potential future directions is provided.


Subject(s)
Nanostructures , Peptides , Amino Acids
10.
Org Biomol Chem ; 16(14): 2499-2507, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29565077

ABSTRACT

Harnessing the self-assembly of peptide sequences has demonstrated great promise in the domain of creating high precision shape-tunable biomaterials. The unique properties of peptides allow for a building block approach to material design. In this study, self-assembly of mixed systems encompassing two peptide sequences with identical hydrophobic regions and distinct polar segments is investigated. The two peptide sequences are diphenylalanine and phenylalanine-asparagine-phenylalanine. The study examines the impact of molecular composition (namely, the total peptide concentration and the relative tripeptide concentration) on the morphology of the self-assembled hybrid biological material. We report a rich polymorphism in the assemblies of these peptides and explain the relationship between the peptide sequence, concentration and the morphology of the supramolecular assembly.


Subject(s)
Asparagine/analogs & derivatives , Asparagine/chemistry , Biocompatible Materials/chemistry , Dipeptides/chemistry , Nanostructures/chemistry , Oligopeptides/chemistry , Biocompatible Materials/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Protein Multimerization
11.
RSC Adv ; 8(44): 24982-24992, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-35542143

ABSTRACT

Biofouling is a pervasive problem which demands the creation of smart, antifouling surfaces. Towards this end, we examine the interactions between a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer and a polyamidoamine (PAMAM) dendron-grafted surface. In addition, we investigate the impact of dendron generation on the system behavior. To resolve the multiscale dynamical processes occurring over a large spatial scale, we employ Molecular Dynamics simulations with a coarse-grained implicit solvent force field. Our results demonstrate the transient and equilibrium system dynamics to be determined by the PAMAM dendron generation along with the underlying mechanisms. Higher generation dendrons are observed to favor penetration of the DPPC molecules into the dendron branches, thereby enabling sustained interactions between the membrane and the dendron-grafted surface. Under equilibrium, the membrane adopts a bowl-shaped morphology whose dimensions are determined by the dendron generation and density of interactions. The results from our study can be used to guide the design of novel surfaces with selective antifouling properties which can prevent the adsorption of microorganisms onto lipid membranes.

12.
Langmuir ; 33(51): 14663-14673, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29144759

ABSTRACT

Liposomes have become increasingly common in the delivery of bioactive agents due to their ability to encapsulate hydrophobic and hydrophilic drugs with excellent biocompatibility. While commercial liposome formulations improve bioavailability of otherwise quickly eliminated or insoluble drugs, tailoring formulation properties for specific uses has become a focus of liposome research. Here, we report the design, synthesis, and characterization of two series of amphiphilic macromolecules (AMs), consisting of acylated polyol backbones conjugated to poly(ethylene glycol) (PEG) that can serve as the sole additives to stabilize and control hydrophilic molecule release rates from distearoylphosphatidylcholine (DSPC)-based liposomes. As compared to DSPC alone, all AMs enable liposome formation and stabilize their colloidal properties at low incorporation ratios, and the AM's degree of unsaturation and hydrophobe conformation have profound impacts on stability duration. The AM's chemical structures, particularly hydrophobe unsaturation, also impact the rate of hydrophilic drug release. Course-grained molecular dynamics simulations were utilized to better understand the influence of AM structure on lipid properties and potential liposomal stabilization. Results indicate that both hydrophobic domain structure and PEG density can be utilized to fine-tune liposome properties for the desired application. Collectively, AMs demonstrate the potential to simultaneously stabilize and control the release profile of hydrophilic cargo.


Subject(s)
Unilamellar Liposomes , Hydrophobic and Hydrophilic Interactions , Lipids , Macromolecular Substances , Polyethylene Glycols
13.
ACS Nano ; 11(7): 6661-6671, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28582613

ABSTRACT

The structural integrity of red blood cells and drug delivery carriers through blood vessels is dependent upon their ability to adapt their shape during their transportation. Our goal is to examine the role of the composition of bio-inspired multicomponent and hairy vesicles on their shape during their transport through in a channel. Through the dissipative particle dynamics simulation technique, we apply Poiseuille flow in a cylindrical channel. We investigate the effect of flow conditions and concentration of key molecular components on the shape, phase separation, and structural integrity of the bio-inspired multicomponent and hairy vesicles. Our results show the Reynolds number and molecular composition of the vesicles impact their flow-induced deformation, phase separation on the outer monolayer due to the Marangoni effect, and rupture. The findings from this study could be used to enhance the design of drug delivery and tissue engineering systems.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Biomimetic Materials/chemistry , Dimyristoylphosphatidylcholine/chemistry , Drug Carriers/chemistry , Phase Transition , Polyethylene Glycols/chemistry , Cell Shape , Cholesterol/chemistry , Computer Simulation , Erythrocytes/chemistry , Erythrocytes/cytology , Glycolipids/chemistry , Hydrodynamics , Liposomes/chemistry , Models, Molecular
14.
ACS Nano ; 10(8): 7351-61, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27434532

ABSTRACT

We examine the interaction between peptide-inspired nanoparticles, or nanopins, and multicomponent vesicles using the dissipative particle dynamics simulation technique. We study the role of nanopin architecture and cholesterol concentration on the binding of the nanopins to the lipid bilayer, their insertion, and postembedding self-organization. We find the insertion to be triggered by enthalpically unfavorable interactions between the hydrophilic solvent and the lipophilic components of the nanopins. The nanopins are observed to form aggregates in solution, insert into the bilayer, and disassemble into the individual nanopins following the insertion process. We examine factors that influence the orientation of the nanopins in the host vesicle. We report the length of the hydrophilic segment of the nanopins to regulate their orientation within the clusters before the embedding process and in the bilayer, after the postinsertion disassembly of the aggregates. The orientation angle distribution for a given nanopin architecture is found to be driven by energy minimization. In addition, higher concentration of cholesterol is observed to constrain the orientation of the nanopins. We also report thermal fluctuations to induce transverse diffusion of nanopins with specific architectures. The incidence of transverse diffusion is observed to decrease with the concentration of cholesterol. Our results can provide guidelines for designing peptide-inspired nanoparticles or macromolecules that can interface with living cells to serve as sensors for applications in medicine, sustainability, and energy.


Subject(s)
Anti-Infective Agents , Nanoparticles , Peptides , Diffusion , Lipid Bilayers
15.
J Phys Chem B ; 120(27): 6646-56, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27340906

ABSTRACT

We demonstrate the adsorption of nanoparticles (NPs) with charged patches onto a binary vesicle encompassing polar neutral and polar zwitterionic lipids via an implicit solvent coarse-grained model and molecular dynamics simulations. Our investigations on the interactions between NPs and a binary vesicle demonstrate that the adsorption of charged NPs onto a binary vesicle surface can induce structural reorganization of the lipid bilayer. The approach of the NP to the vesicle surface is accompanied by spatial reorganization of the zwitterionic lipids, and the degree of reorganization is found to depend on the NP patch size. Interfacial adsorption of the NP is observed to promote a group of zwitterionic lipids to cluster at the adsorption site. Spatial reorganization of the zwitterionic lipids is activated by favorable electrostatic interactions with the NP and not between the lipids. The favorable electrostatic interaction between oppositely charged lipid headgroup moieties increases and assists the clustering process as the NP approaches the vesicle surface. In addition, the availability of zwitterionic lipids in the vesicle affects the adsorption dynamics of multiple NPs. Our results can be used for the design of reconfigurable biomaterials for applications in drug delivery, sensing, and imaging.


Subject(s)
Lipid Bilayers/chemistry , Nanoparticles/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Adsorption , Molecular Dynamics Simulation , Static Electricity
16.
J Phys Chem B ; 120(15): 3666-76, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27031284

ABSTRACT

The dissipative particle dynamics (DPD) simulation technique is a coarse-grained (CG) molecular dynamics-based approach that can effectively capture the hydrodynamics of complex systems while retaining essential information about the structural properties of the molecular species. An advantageous feature of DPD is that it utilizes soft repulsive interactions between the beads, which are CG representation of groups of atoms or molecules. In this study, we used the DPD simulation technique to study the aggregation characteristics of ABA triblock copolymers in aqueous medium. Pluronic polymers (PEG-PPO-PEG) were modeled as two segments of hydrophilic beads and one segment of hydrophobic beads. Tyrosine-derived PEG5K-b-oligo(desaminotyrosyl tyrosine octyl ester-suberate)-b-PEG5K (PEG5K-oligo(DTO-SA)-PEG5K) block copolymers possess alternate rigid and flexible components along the hydrophobic oligo(DTO-SA) chain, and were modeled as two segments of hydrophilic beads and one segment of hydrophobic, alternate soft and hard beads. The formation, structure, and morphology of the initial aggregation of the polymer molecules in aqueous medium were investigated by following the aggregation dynamics. The dimensions of the aggregates predicted by the computational approach were in good agreement with corresponding results from experiments, for the Pluronic and PEG5K-oligo(DTO-SA)-PEG5K block copolymers. In addition, DPD simulations were utilized to determine the critical aggregation concentration (CAC), which was compared with corresponding results from an experimental approach. For Pluronic polymers F68, F88, F108, and F127, the computational results agreed well with experimental measurements of the CAC measurements. For PEG5K-b-oligo(DTO-SA)-b-PEG5K block polymers, the complexity in polymer structure made it difficult to directly determine their CAC values via the CG scheme. Therefore, we determined CAC values of a series of triblock copolymers with 3-8 DTO-SA units using DPD simulations, and used these results to predict the CAC values of triblock copolymers with higher molecular weights by extrapolation. In parallel, a PEG5K-b-oligo(DTO-SA)-b-PEG5K block copolymer was synthesized, and the CAC value was determined experimentally using the pyrene method. The experimental CAC value agreed well with the CAC value predicted by simulation. These results validate our CG models, and demonstrate an avenue to simulate and predict aggregation characteristics of ABA amphiphilic triblock copolymers with complex structures.


Subject(s)
Molecular Dynamics Simulation , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemical synthesis , Pyrenes/chemistry , Water/chemistry
17.
Colloids Surf B Biointerfaces ; 141: 458-466, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26896651

ABSTRACT

Via the Dissipative Particle Dynamics simulation technique we investigate the interfacial adsorption of nanoparticles with a binding site onto a hairy vesicle encompassing phospholipids and lipids functionalized with oligo ethylene glycol (OEG) chain. The functionalized nanoparticles are modeled as patchy spherical particles. We examine the relation between the relative concentration and size of the OEG chains, the adsorption kinetics, life-time and post-adsorption dynamics of the nanoparticles. We also draw correspondence with experimental studies on the adsorption of proteins onto the surface of colloidal particles. Results from our investigations can elucidate the fundamental factors and mechanisms controlling the adsorption of functionalized nanoparticles onto colloidal particles.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , Phospholipids/chemistry , Polyethylene Glycols/chemistry , Unilamellar Liposomes/chemistry , Adsorption , Computer Simulation , Kinetics , Models, Molecular , Particle Size , Proteins/chemistry , Surface Properties
18.
J Comput Chem ; 37(10): 920-6, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26676461

ABSTRACT

Highly branched polymers such as polyamidoamine (PAMAM) dendrimers are promising macromolecules in the realm of nanobiotechnology due to their high surface coverage of tunable functional groups. Modeling efforts of PAMAM can provide structural and morphological properties, but the inclusion of solvents and the exponential growth of atoms with generations make atomistic simulations computationally expensive. We apply an implicit solvent coarse-grained model, called the Dry Martini force field, to PAMAM dendrimers. The reduced number of particles and the absence of a solvent allow the capture of longer spatiotemporal scales. This study characterizes PAMAM dendrimers of generations one through seven in acidic, neutral, and basic pH environments. Comparison with existing literature, both experimental and theoretical, is done using measurements of the radius of gyration, moment of inertia, radial distributions, and scaling exponents. Additionally, ion coordination distributions are studied to provide insight into the effects of interior and exterior protonation on counter ions. This model serves as a starting point for future designs of larger functionalized dendrimers.

19.
J Phys Chem B ; 119(32): 10207-15, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26208219

ABSTRACT

We design sterically stable biocompatible vehicles with tunable shapes through the self-assembly of a binary mixture composed of amphiphilic molecular species, such as PEGylated lipids, and phospholipids under volumetric confinement. We use a molecular dynamics-based mesoscopic simulation technique called dissipative particle dynamics to resolve the aggregation dynamics, structure, and morphology of the hybrid aggregate. We examine the effect of confinement on the growth dynamics and shape of the hybrid aggregate, and demonstrate the formation of different morphologies, such as oblate and prolate shaped vesicles and bicelles. We perform these investigations by varying the degree of nanoscale confinement, for different relative concentrations of the species and the length of the functional groups. Results from our investigations can be used for the design and prediction of novel hybrid soft materials for applications requiring the encapsulation of therapeutic agents in micro- or nanofluidic channels.


Subject(s)
Membranes, Artificial , Molecular Dynamics Simulation , Phospholipids/chemistry , Hydrophobic and Hydrophilic Interactions
20.
Phys Chem Chem Phys ; 17(16): 10615-23, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25804856

ABSTRACT

An expanding area of green technology is the wastewater treatment of heavy metal ions. As the adsorption of cations onto solid surfaces has been proven to be successful, recent research has demonstrated enhanced adsorption profiles by grafting dendron brushes onto a solid support. Via the molecular dynamics technique, we examine the adsorption of Pb(II) ions onto polyamidoamine (PAMAM) with carboxylate terminal groups through a coarse-grained implicit solvent model. We identify dendron generations and grafting densities, or surface coverage levels, which demonstrate optimal adsorption of Pb(II) ions. Our results can be potentially used to design functionalized surfaces for metal ion adsorption in application entailing environmental remediation or protective surface coating.


Subject(s)
Dendrimers/chemistry , Lead/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Lead/isolation & purification , Molecular Conformation , Molecular Dynamics Simulation , Solvents/chemistry , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...