Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Microbiol ; 12: 638331, 2021.
Article in English | MEDLINE | ID: mdl-34276582

ABSTRACT

Foodborne illness caused by pathogenic Vibrios is generally associated with the consumption of raw or undercooked seafood. Fish and other seafood can be contaminated with Vibrio species, natural inhabitants of the marine, estuarine, and freshwater environment. Pathogenic Vibrios of major public health concerns are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Common symptoms of foodborne Vibrio infection include watery diarrhea, stomach cramping, nausea, vomiting, fever, and chills. Administration of oral or intravenous rehydration salts solution is the mainstay for the management of cholera, and antibiotics are also used to shorten the duration of diarrhea and to limit further transmission of the disease. Currently, doxycycline, azithromycin, or ciprofloxacin are commonly used for V. cholerae, and doxycycline or quinolone are administered for V. parahaemolyticus, whereas doxycycline and a third-generation cephalosporin are recommended for V. vulnificus as initial treatment regimen. The emergence of antimicrobial resistance (AMR) in Vibrios is increasingly common across the globe and a decrease in the effectiveness of commonly available antibiotics poses a global threat to public health. Recent progress in comparative genomic studies suggests that the genomes of the drug-resistant Vibrios harbor mobile genetic elements like plasmids, integrating conjugative elements, superintegron, transposable elements, and insertion sequences, which are the major carriers of genetic determinants encoding antimicrobial resistance. These mobile genetic elements are highly dynamic and could potentially propagate to other bacteria through horizontal gene transfer (HGT). To combat the serious threat of rising AMR, it is crucial to develop strategies for robust surveillance, use of new/novel pharmaceuticals, and prevention of antibiotic misuse.

3.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31969437

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) in immunocompromised individuals. KS lesion cells exhibit many similarities to neuroendocrine (NE) cancers, such as highly vascular and red/purple tumor lesions, spindle-shaped cells, an insignificant role for classic oncogenes in tumor development, the release of bioactive amines, and indolent growth of the tumors. However, the mechanistic basis for the similarity of KS lesion endothelial cells to neuroendocrine tumors remains unknown. Next-generation sequencing and bioinformatics analysis in the present study demonstrate that endothelial cells latently infected with KSHV express several neuronal and NE genes. De novo infection of primary dermal endothelial cells with live and UV-inactivated KSHV demonstrated that viral gene expression is responsible for the upregulation of five selected NE genes (adrenomedullin 2 [ADM2], histamine receptor H1 [HRH1], neuron-specific enolase [NSE] [ENO2], neuronal protein gene product 9.5 [PGP9.5], and somatostatin receptor 1 [SSTR1]). Immunofluorescence and immunohistochemistry examinations demonstrated the robust expression of the NE genes HRH1 and NSE/ENO2 in KSHV-infected KS tissue samples and KS visceral tissue microarrays. Further analysis demonstrated that KSHV latent open reading frame K12 (ORFK12) gene (kaposin A)-mediated decreased host REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) protein, a neuronal gene transcription repressor protein, is responsible for NE gene expression in infected endothelial cells. The NE gene expression observed in KSHV-infected cells was recapitulated in uninfected endothelial cells by the exogenous expression of ORFK12 and by the treatment of cells with the REST inhibitor X5050. When the neuroactive ligand-activating receptor HRH1 and inhibitory SSTR1 were knocked out by CRISPR, HRH1 knockout (KO) significantly inhibited cell proliferation, while SSTR1 KO induced cell proliferation, thus suggesting that HRH1 and SSTR1 probably counteract each other in regulating KSHV-infected endothelial cell proliferation. These results demonstrate that the similarity of KS lesion cells to neuroendocrine tumors is probably a result of KSHV infection-induced transformation of nonneuronal endothelial cells into cells with neuroendocrine features. These studies suggest a potential role of neuroendocrine pathway genes in the pathobiological characteristics of KSHV-infected endothelial cells, including a potential mechanism of escape from the host immune system by the expression of immunologically privileged neuronal-site NE genes, and NE genes could potentially serve as markers for KSHV-infected KS lesion endothelial cells as well as novel therapeutic targets to control KS lesions.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates several cellular pathways for its survival advantage during its latency in the infected human host. Here, we demonstrate that KSHV infection upregulates the expression of genes related to neuronal and neuroendocrine (NE) functions that are characteristic of NE tumors, both in vitro and in KS patient tissues and the heterogeneity of neuroendocrine receptors having opposing roles in KSHV-infected cell proliferation. Induction of NE genes by KSHV could also provide a potential survival advantage, as the expression of proteins at immunologically privileged sites such as neurons on endothelial cells may be an avenue to escape host immune surveillance functions. The NE gene products identified here could serve as markers for KSHV-infected cells and could potentially serve as therapeutic targets to combat KSHV-associated KS.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Endothelial Cells/virology , Gene Expression Regulation, Neoplastic , Herpesviridae Infections/virology , Herpesvirus 8, Human/physiology , Sarcoma, Kaposi/genetics , Sarcoma, Kaposi/virology , Carcinoma, Neuroendocrine/pathology , Cell Line , Cell Proliferation , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation, Viral , Gene Knockout Techniques , Herpesviridae Infections/pathology , Humans , Open Reading Frames/genetics , Peptide Hormones/genetics , Phosphopyruvate Hydratase/genetics , Receptors, Histamine/genetics , Receptors, Somatostatin/genetics , Repressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Up-Regulation , Viral Proteins/genetics , Virus Latency/genetics , Virus Latency/physiology
6.
PLoS Pathog ; 12(10): e1005960, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764233

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3ß1, αVß3 and αVß5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and-III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of KSHV intracellular trafficking, and CHMP5 (ESCRT-III) was also associated with Rab 5 and Rab 7. Knockdown of Tsg101 significantly inhibited the transition of virus from early to late endosomes. Collectively, our studies reveal that Tsg101 plays a role in the trafficking of macropinocytosed KSHV in the endothelial cells which is essential for the successful viral genome delivery into the nucleus, viral gene expression and infection. Thus, ESCRT molecules could serve as therapeutic targets to combat KSHV infection.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endothelial Cells/virology , Herpesviridae Infections , Host-Parasite Interactions/physiology , Transcription Factors/metabolism , Virus Internalization , Blotting, Western , Fluorescent Antibody Technique , Herpesvirus 8, Human , Humans , Immunoprecipitation , Microscopy, Fluorescence , Pinocytosis , Real-Time Polymerase Chain Reaction , Transfection
7.
PLoS Pathog ; 12(10): e1005967, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764250

ABSTRACT

IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1ß and antiviral type-1 interferon-ß (IFN-ß) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1ß generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-ß. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn't induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn't affect the acetylation of H2B, its cytoplasmic transportation, and the association of STING with IFI16 and H2B during KSHV infection. Absence of H2B didn't affect IFI16-ASC association and cytoplasmic distribution and thus demonstrating that IFI16-H2B complex is independent of IFI16-ASC-procaspase-1-inflammasome complex formed during infection. The H2B-IFI16-BRCA1 complex interacted with cGAS and STING in the cytoplasm leading to TBK1 and IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production. Silencing of H2B, cGAS and STING inhibited IFN-ß induction but not IL-1ß secretion, and cGAMP activity is significantly reduced by H2B and IFI16 knockdown during infection. Silencing of ASC inhibited IL-1ß secretion but not IFN-ß secretion during de novo KSHV and HSV-1 infection. These studies identify H2B as an innate nuclear sensor mediating a novel extra chromosomal function, and reveal that two IFI16 complexes mediate KSHV and HSV-1 genome recognition responses, with recognition by the IFI16-BRCA1-H2B complex resulting in IFN-ß responses and recognition by IFI16-BRCA1 resulting in inflammasome responses.


Subject(s)
Genome, Viral , Herpesviridae Infections/immunology , Histones/immunology , Interferon-beta/immunology , Nuclear Proteins/immunology , Phosphoproteins/immunology , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Cytoplasm/immunology , Enzyme-Linked Immunosorbent Assay , Herpesviridae/immunology , Humans , Immunity, Innate , Immunoprecipitation , Inflammasomes/immunology , Interferon-beta/biosynthesis , Microscopy, Fluorescence
8.
Res Vet Sci ; 108: 76-84, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27663374

ABSTRACT

The study explored antagonistic activity of the cellular components of potential probiotic bacteria from mrigal (Cirrhinus mrigala) against fish pathogens with a basic insight of the chemical nature of the antagonistic compound. Totally 208 autochthonous gut bacteria were isolated, of which 22 strains revealed antagonism towards ≥2 of the six common fish pathogens. Zones of inhibition (halo diameter) were presented as score and the four most promising strains were selected as putative probiotics based on the cumulative score assigned. Further, evaluation of different cellular components exhibited bactericidal activity against the fish pathogens. Verification of other probiotic properties revealed that each of the selected strains produced diverse extra-cellular enzymes. The selected strains grew better in intestinal mucus than skin mucus, were resistant to diluted bile juice (2-20%) and safe for the target fish. The extracellular product used as crude bacteriocin revealed thermostability (up to 90°C) and activity over wide pH range (4-9). Partial loss of activity through treatment with proteinase-K and trypsin indicated proteinaceous nature of the antibacterial compound produced by the probiotic strains. 16S rRNA partial gene sequencing revealed that the four strains CM1FG7, CM1HG5, CM3FG19 and CM3HG10 were similar to Bacillus stratosphericus (KM277362), Bacillus aerophilus (KM277363), Bacillus licheniformis (KM277364) and Solibacillus silvestris (KM277365), respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/chemistry , Bacteria/drug effects , Bacteriocins/pharmacology , Carps/microbiology , Probiotics/pharmacology , Animals , Bacteria/genetics , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA/veterinary
9.
J Virol ; 90(19): 8822-41, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27466416

ABSTRACT

UNLABELLED: IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE: Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.


Subject(s)
Herpesvirus 8, Human/physiology , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Virus Latency , Virus Replication , Cell Line, Tumor , Gene Expression , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Proteolysis
10.
J Virol ; 90(8): 3860-3872, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26819309

ABSTRACT

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na(+)/H(+)exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. IMPORTANCE: Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV. Although the role of ESCRT protein Hrs has been extensively studied with respect to endosomal movement and sorting of ubiquitinated proteins into lysosomes, its function in macropinocytosis is not known. In the present study, we demonstrate for the first time that upon KSHV infection, the endogenous Hrs localizes to the plasma membrane and the membrane-associated Hrs facilitates assembly of signaling molecules, macropinocytosis, and virus entry. Hrs recruits ROCK1 to the membrane, which is required for the activation of NHE1 and an increase in submembranous intracellular pH occurring during macropinocytosis. These studies demonstrate that the localization of Hrs from the cytosol to the plasma membrane is important for coupling membrane dynamics to the cytosolic signaling events during macropinocytosis of KSHV.


Subject(s)
Endosomal Sorting Complexes Required for Transport/physiology , Endothelium, Vascular/virology , Herpesvirus 8, Human/physiology , Phosphoproteins/physiology , Pinocytosis , Virus Internalization , Actinin/metabolism , Cell Line , Cell Membrane/virology , Dermis/blood supply , Dermis/virology , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression , Gene Knockdown Techniques , Humans , Microvessels/cytology , Microvessels/virology , Phosphoproteins/genetics , rho-Associated Kinases/metabolism
11.
PLoS Pathog ; 11(7): e1005019, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134128

ABSTRACT

The IL-1ß and type I interferon-ß (IFN-ß) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1ß and IFN-ß production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1ß production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-ß production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1ß production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-ß production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear acetylation of IFI16 as a dynamic essential post-genome recognition event in the nucleus that is common to the IFI16-mediated innate responses of inflammasome induction and IFN-ß production during herpesvirus (KSHV, EBV, HSV-1) infections.


Subject(s)
Herpesviridae Infections/metabolism , Immunity, Innate/immunology , Interferon-beta/biosynthesis , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Transport/immunology , Acetylation , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Chromatin Immunoprecipitation , Cytoplasm/immunology , Cytoplasm/metabolism , Herpesviridae Infections/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/metabolism , Humans , Immunoprecipitation , Inflammasomes/immunology , Inflammasomes/metabolism , Microscopy, Fluorescence , Polymerase Chain Reaction , RNA, Small Interfering , Transfection
12.
PLoS Pathog ; 11(6): e1005030, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26121674

ABSTRACT

The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1ß, IL-18 or interferon ß (IFN-ß). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1ß generation. IFI16 also induces IFN-ß during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1ß production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16, subsequent assembly and cytoplasmic distribution of IFI16-inflammasomes leading into IL-1ß formation and the induction of IFN-ß via cytoplasmic signaling through IFI16-STING, TBK1 and IRF3.


Subject(s)
BRCA1 Protein/metabolism , DNA, Viral/genetics , Herpesvirus 1, Human/genetics , Inflammasomes/metabolism , Interferon-beta/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Humans , Signal Transduction/genetics
13.
J Virol ; 89(15): 7874-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25995248

ABSTRACT

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis. Next-generation sequencing of KSHV transcripts in the PEL-derived BCBL-1 cell line revealed that knockdown of this activated Nrf2 results in global elevation of lytic genes. Nrf2 inhibition by the chemical brusatol also induces lytic gene expression. Both Nrf2 knockdown and brusatol-mediated inhibition induced KSHV lytic reactivation in BCBL-1 cells. In a series of follow-up experiments, we characterized the mechanism of Nrf2-mediated regulation of KSHV lytic repression during latency. Biochemical assays showed that Nrf2 interacted with KSHV latency-associated nuclear antigen 1 (LANA-1) and the host transcriptional repressor KAP1, which together have been shown to repress lytic gene expression. Promoter studies showed that although Nrf2 alone induces the open reading frame 50 (ORF50) promoter, its association with LANA-1 and KAP1 abrogates this effect. Interestingly, LANA-1 is crucial for efficient KAP1/Nrf2 association, while Nrf2 is essential for LANA-1 and KAP1 recruitment to the ORF50 promoter and its repression. Overall, these results suggest that activated Nrf2, LANA-1, and KAP1 assemble on the ORF50 promoter in a temporal fashion. Initially, Nrf2 binds to and activates the ORF50 promoter during early de novo infection, an effect that is exploited during latency by LANA-1-mediated recruitment of the host transcriptional repressor KAP1 on Nrf2. Cell death assays further showed that Nrf2 and KAP1 knockdown induce significant cell death in PEL cell lines. Our studies suggest that Nrf2 modulation through available oral agents is a promising therapeutic approach in the treatment of KSHV-associated malignancies. IMPORTANCE: KS and PEL are aggressive KSHV-associated malignancies with moderately effective, highly toxic chemotherapies. Other than ganciclovir and alpha interferon (IFN-α) prophylaxis, no KSHV-associated chemotherapy targets the underlying infection, a major oncogenic force. Hence, drugs that selectively target KSHV infection are necessary to eradicate the malignancy while sparing healthy cells. We recently showed that KSHV infection of endothelial cells activates the transcription factor Nrf2 to promote an environment conducive to infection and oncogenesis. Nrf2 is modulated through several well-tolerated oral agents and may be an important target in KSHV biology. Here, we investigate the role of Nrf2 in PEL and demonstrate that Nrf2 plays an important role in KSHV gene expression, lytic reactivation, and cell survival by interacting with the host transcriptional repressor KAP1 and the viral latency-associated protein LANA-1 to mediate global lytic gene repression and thus cell survival. Hence, targeting Nrf2 with available therapies is a viable approach in the treatment of KSHV malignancies.


Subject(s)
Antigens, Viral/metabolism , Gene Expression Regulation, Viral , Herpesvirus 8, Human/metabolism , Lymphoma, Primary Effusion/metabolism , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Sarcoma, Kaposi/metabolism , Antigens, Viral/genetics , Down-Regulation , Herpesvirus 8, Human/genetics , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Lymphoma, Primary Effusion/genetics , Lymphoma, Primary Effusion/virology , NF-E2-Related Factor 2/genetics , Nuclear Proteins/genetics , Protein Binding , Repressor Proteins/genetics , Sarcoma, Kaposi/genetics , Sarcoma, Kaposi/virology , Trans-Activators/genetics , Trans-Activators/metabolism , Tripartite Motif-Containing Protein 28
14.
Viruses ; 6(10): 4024-46, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25341665

ABSTRACT

Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Receptors, Cell Surface/metabolism , Signal Transduction , Virus Internalization , Cell Nucleus/virology , DNA, Viral/genetics , Endocytosis/physiology , Endosomes/virology , Endothelial Cells/virology , Fibroblasts/virology , Host-Pathogen Interactions , Humans , Pinocytosis
15.
PLoS Pathog ; 10(10): e1004389, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25299066

ABSTRACT

Kaposi's sarcoma associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) and B-cell proliferative primary effusion lymphoma (PEL), common malignancies seen in immunocompromised HIV-1 infected patients. The progression of these cancers occurs by the proliferation of cells latently infected with KSHV, which is highly dependent on autocrine and paracrine factors secreted from the infected cells. Glutamate and glutamate receptors have emerged as key regulators of intracellular signaling pathways and cell proliferation. However, whether they play any role in the pathological changes associated with virus induced oncogenesis is not known. Here, we report the first systematic study of the role of glutamate and its metabotropic glutamate receptor 1 (mGluR1) in KSHV infected cell proliferation. Our studies show increased glutamate secretion and glutaminase expression during de novo KSHV infection of endothelial cells as well as in KSHV latently infected endothelial and B-cells. Increased mGluR1 expression was detected in KSHV infected KS and PEL tissue sections. Increased c-Myc and glutaminase expression in the infected cells was mediated by KSHV latency associated nuclear antigen 1 (LANA-1). In addition, mGluR1 expression regulating host RE-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) was retained in the cytoplasm of infected cells. KSHV latent protein Kaposin A was also involved in the over expression of mGluR1 by interacting with REST in the cytoplasm of infected cells and by regulating the phosphorylation of REST and interaction with ß-TRCP for ubiquitination. Colocalization of Kaposin A with REST was also observed in KS and PEL tissue samples. KSHV infected cell proliferation was significantly inhibited by glutamate release inhibitor and mGluR1 antagonists. These studies demonstrated that elevated glutamate secretion and mGluR1 expression play a role in KSHV induced cell proliferation and suggest that targeting glutamate and mGluR1 is an attractive therapeutic strategy to effectively control the KSHV associated malignancies.


Subject(s)
Cell Proliferation , Glutamates/metabolism , Receptors, Metabotropic Glutamate/metabolism , Sarcoma, Kaposi/virology , B-Lymphocytes/virology , Cell Line , Cell Proliferation/physiology , Endothelial Cells/metabolism , Herpesviridae Infections/virology , Humans , Receptors, Metabotropic Glutamate/immunology , Sarcoma, Kaposi/metabolism , Virus Latency/immunology
16.
PLoS One ; 9(5): e97580, 2014.
Article in English | MEDLINE | ID: mdl-24831807

ABSTRACT

Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.


Subject(s)
Autophagy , Breast Neoplasms/metabolism , DNA Damage , Epithelial Cells/cytology , Exosomes/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylcysteine/chemistry , Breast/pathology , Cell Line, Tumor , Culture Media, Conditioned/chemistry , DNA/chemistry , DNA Repair , Female , Humans , MCF-7 Cells , Phosphorylation
17.
PLoS Pathog ; 10(2): e1003941, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24550731

ABSTRACT

KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d) cells. c-Cbl mediates the translocation of virus bound α3ß1 and αVß3 integrins into lipid rafts (LRs), where KSHV interacts and activates EphrinA2 (EphA2). EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s) coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1) associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope) and BrdU (viral DNA) labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2's association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s) to coordinate and sustain the EphA2 mediated signaling involved in its entry, and CIB1 is an attractive therapeutic target to block KSHV infection.


Subject(s)
Calcium-Binding Proteins/metabolism , Endothelial Cells/metabolism , Endothelial Cells/virology , Ephrin-A2/metabolism , Herpesvirus 8, Human/metabolism , Blotting, Western , Cells, Cultured , Flow Cytometry , Herpesviridae Infections/metabolism , Humans , Immunoprecipitation , Microscopy, Fluorescence , Pinocytosis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Skin/blood supply , Virus Internalization
18.
J Virol ; 88(5): 2821-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352470

ABSTRACT

UNLABELLED: The DNA damage response (DDR) that evolved to repair host cell DNA damage also recognizes viral DNA entering the nucleus during infections. Here, we investigated the modulation of DDR signaling during de novo infection of primary endothelial cells by Kaposi's sarcoma-associated herpesvirus (KSHV). Phosphorylation of representative DDR-associated proteins, such as ataxia telangiectasia mutated (ATM) and H2AX, was induced as early as 30 min (0.5 h) postinfection and persisted during in vitro KSHV latency. Phosphorylated H2AX (γH2AX) colocalized at 30 min (0.5 h) with the KSHV genome entering the nuclei. Total H2AX protein levels also increased, and the increase was attributed to a decrease in degradative H2AX Lys48-linked polyubiquitination with a concomitant increase in Lys63-linked polyubiquitination that was shown to increase protein stability. ATM and H2AX phosphorylation and γH2AX nuclear foci were also induced by UV-inactivated KSHV, which ceased at later times of infection. Inhibition of ATM kinase activity by KU-55933 and H2AX knockdown by small interfering RNA significantly reduced the expression of the KSHV latency-associated nuclear antigen 1 (LANA-1; ORF73) and LANA-1 nuclear puncta. Knockdown of H2AX also resulted in a >80% reduction in the nuclear KSHV DNA copy numbers. Similar results were also observed in ATM-negative cells, although comparable levels of viral DNA entered ATM-negative and ATM-positive cell nuclei. In contrast, knockdown of CHK1 and CHK2 did not affect ORF73 expression. Collectively, these results demonstrate that KSHV induces ATM and H2AX, a selective arm of the DDR, for the establishment and maintenance of its latency during de novo infection of primary endothelial cells. IMPORTANCE: Eukaryotic cells mount a DNA damage response (DDR) to sense and repair different types of cellular DNA damage. In addition, DDR also recognizes exogenous genetic material, such as the viral DNA genome entering the nucleus during infections. The present study was undertaken to determine whether de novo Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates DDR. Our results demonstrate that early during de novo infection of primary endothelial cells, KSHV induces a selective arm of DDR signaling, such as the ATM kinase and its downstream target, H2AX, which are essential for KSHV's latent gene expression and the establishment of latency. These studies suggest that targeting ATM and H2AX could serve as an attractive strategy to block the establishment of KSHV latent infection and the associated malignancies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Endothelial Cells/virology , Herpesvirus 8, Human/physiology , Histones/metabolism , Virus Latency , Antigens, Nuclear/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Checkpoint Kinase 1 , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Gene Expression , Gene Expression Regulation, Viral , Gene Knockdown Techniques , Genome, Viral , Herpesviridae Infections/genetics , Herpesviridae Infections/metabolism , Histones/genetics , Humans , Models, Biological , Morpholines/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Transport , Pyrones/pharmacology , Signal Transduction , Viral Proteins/genetics , Virus Latency/genetics
19.
PLoS Pathog ; 9(7): e1003510, 2013.
Article in English | MEDLINE | ID: mdl-23874206

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3ß1 and αVß3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVß5, αVß3 and α3ß1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Endocytosis , Ephrin-A2/metabolism , Fibroblasts/virology , Herpesvirus 8, Human/physiology , Integrins/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Cells, Cultured , Ephrin-A2/agonists , Ephrin-A2/antagonists & inhibitors , Ephrin-A2/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Mutant Proteins/agonists , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering , Signal Transduction , Ubiquitination , Up-Regulation , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization
20.
J Virol ; 87(15): 8606-23, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720728

ABSTRACT

Epstein-Barr virus (EBV), etiologically linked with human B-cell malignancies and nasopharyngeal carcinoma (NPC), establishes three types of latency that facilitate its episomal genome persistence and evasion of host immune responses. The innate inflammasome responses recognize the pathogen-associated molecular patterns which lead into the association of a cytoplasmic sensor such as NLRP3 and AIM2 proteins or nuclear interferon-inducible protein 16 (IFI16) with adaptor ASC protein (apoptosis-associated speck-like protein with a caspase recruitment domain) and effector procaspase-1, resulting in active caspase-1 formation which cleaves the proforms of inflammatory interleukin-1ß (IL-1ß), IL-18, and IL-33 cytokines. Whether inflammasome responses recognize and respond to EBV genome in the nuclei was not known. We observed evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1ß, -IL-18, and -IL-33, in EBV latency I Raji cells, latency II NPC C666-1 cells, and latency III lymphoblastoid cell lines (LCL). Interaction between ASC with IFI16 but not with AIM2 or NLRP3 was detected in all three latencies and during EBV infection of primary human B cells. IFI16 and cleaved caspase-1, IL-1ß, IL-18, and IL-33 were detected in the exosomes from Raji cells and LCL. Though EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) are common to all forms of EBV latency, caspase-1 cleavage was not detected in cells expressing EBNA1 alone, and blocking EBER transcription did not inhibit caspase-1 cleavage. In fluorescence in situ hybridization (FISH) analysis, IFI16 colocalized with the EBV genome in LCL and Raji cell nuclei. These studies demonstrated that constant sensing of latent EBV genome by IFI16 in all types of latency results in the constitutive induction of the inflammasome and IL-1ß, IL-18, and IL-33 maturation.


Subject(s)
B-Lymphocytes/immunology , Epithelial Cells/immunology , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/physiology , Inflammasomes/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Virus Latency , B-Lymphocytes/virology , Cells, Cultured , Epithelial Cells/virology , Humans , Hydrolysis , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-33 , Interleukins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...