Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Lasers Med Sci ; 39(1): 108, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647731

ABSTRACT

Haemorrhoidal disease is identified by declension of the inflamed and bleeding of vascular tissues of the anal canal. Traditionally, haemorrhoids are associated with chronic constipation and the most common symptoms are irritation in anus region, pain and discomfort, swelling around anus, tender lumps around the anus and rectal bleeding (depending upon the grade of haemorrhoid). Among the several conventional treatment procedures (commonly mentioned as, rubber band litigation, sclerotherapy and electrotherapy), laser haemorrhoidoplasty is an out-patient and less-invasive laparoscopic procedure. From literature survey it has been observed that an exclusive theoretical model depicting the impact of 1064 nm wavelength laser wave on living tissues subjected to haemorrhoid therapy is not available. This research work is a pioneering attempt to develop a theoretical study attributing specifically on laser therapy of haemorrhoid treatment based on Pennes' biological heat transfer model. The corresponding mathematical model has been solved by analytical method to establish thermal response of tissue during the treatment and also the same has been solved a numerical approach based on finite difference method to validate the feasibility of former method due to unavailability of any theoretical model. Impact of variation of blood perfusion term, laser pulse time and optical penetration depth on temperature response of skin tissue is captured. The tissue temperature decreases along with time of laser exposure with increasing the blood perfusion rate as it carries away large amount of heat. With the increase in laser pulse time, tissue temperature declines due to shorter pulse time resulting in higher energy consumed by electrons. The research outcome is successfully validated with less than 1% of error observed between the appointed analytical and numerical scheme.


Subject(s)
Hemorrhoids , Laser Therapy , Humans , Hemorrhoids/surgery , Laser Therapy/methods , Laser Therapy/instrumentation , Hemorrhoidectomy/methods , Models, Theoretical
2.
Proc Inst Mech Eng H ; 235(5): 500-514, 2021 May.
Article in English | MEDLINE | ID: mdl-33611979

ABSTRACT

The present study highlights an analytical hybrid scheme consisted of a shift of variables and finite integral transform for analysing a local thermal non-equilibrium (LTNE) bioheat model. This model can have utilised to be a betterment of prediction of the temperature field in the localised hyperthermia therapy (LHT) for the treatment of cancer patients. As the hyperthermia treatment is only the application in living tissues, an appropriate initial condition for the therapeutic thermal response is proposed instead of a constant temperature taken in the previous studies based on the 1-D heat flow. The present analysis suggests the therapeutic exposure time of 7776.8s (2.16 h) with constant heat flux and the exposure time of 10969.9s (3.06 h) with a sinusoidal heat flux within the usual temperature range of the hyperthermia (in a combination of thermal ablation and medium temperature hyperthermia) to be more effective in the treatment protocol. The presented results show that fatal injuries (tissue trauma, thermal burn, etc.) of internal organs might be possible to avoid by the current therapeutic condition. Therefore, this study may nullify the adverse effect of the existing model with the constant heating and consequently, the repercussion of the several therapeutic variables is to estimate with the development of a thermal profile for the suitability of a therapeutic condition. On the other hand, the present study well matches with the published analysis in case of both the theoretical and experimental (live tissues of the pig due to unavailability of real-time data on the human body) studies and it found the maximum deviation of the thermal response as 2.26% and 2.66%, respectively.


Subject(s)
Burns/prevention & control , Hot Temperature/adverse effects , Hot Temperature/therapeutic use , Hyperthermia, Induced/adverse effects , Neoplasms/therapy , Animals , Female , Humans , Models, Biological , Swine
3.
J Therm Biol ; 71: 41-51, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29301699

ABSTRACT

This research article determines an exact analytical expression for 2-D thermal field in single layer living tissues under a therapeutic condition by means of Fourier and non-Fourier heat transfer approaches. An actual spatially dependent initial condition has been adopted to analyze the heat propagation in tissues. The exact analytical determination for this actual initial condition for temperature may be difficult. However, in this study, an approximate analytical method has newly been established for an appropriate initial condition. With this initial expression, an exact temperature distribution for 2-D heat conduction in plane co-ordinates has been investigated for the predefined therapeutic boundary condition to have knowledge for practical aspects of the thermal therapy. Laplace Transform Method (LTM) in conjunction with the Inversion Theorem is used for the analytical solution treatment. We have utilized both Pennes' bioheat equation (PBHE) and thermal wave model of bioheat equation (TWMBHE) for the analysis. The influence of thermo-biological behavior on 2-D heat conduction in tissues has been studied with the variation of several dependable parameters in relation to the Hyperthermia treatment protocol in a moderate temperature range (42-45°C). The result in the present study has been evidenced for the biological heat transfer for the enforcement of different circumstances and also has been validated with the published value where the maximum temperature deviation of 2.6% has been recorded. We conclude that the temperature curve for TWMBHE model shows a higher waveform nature for low thermal relaxation time and this wavy nature gradually diminishes with an increase in relaxation time. The maximum peak temperature attains 46.3°C for the relaxation time = 2s and with the increase in the relaxation time the peak temperature gradually falls. The impact of blood perfusion rate on the relaxation time has also been established in this paper.


Subject(s)
Hyperthermia, Induced , Models, Theoretical , Thermal Conductivity , Animals , Body Temperature , Humans
4.
J Therm Biol ; 66: 33-48, 2017 May.
Article in English | MEDLINE | ID: mdl-28477908

ABSTRACT

The genesis of the present research paper is to develop a revised exact analytical solution of thermal profile of 1-D Pennes' bioheat equation (PBHE) for living tissues influenced in thermal therapeutic treatments. In order to illustrate the temperature distribution in living tissue both Fourier and non-Fourier model of 1-D PBHE has been solved by 'Separation of variables' technique. Till date most of the research works have been carried out with the constant initial steady temperature of tissue which is not at all relevant for the biological body due to its nonhomogeneous living cells. There should be a temperature variation in the body before the therapeutic treatment. Therefore, a coupled heat transfer in skin surface before therapeutic heating must be taken account for establishment of exact temperature propagation. This approach has not yet been considered in any research work. In this work, an initial condition for solving governing differential equation of heat conduction in biological tissues has been represented as a function of spatial coordinate. In a few research work, initial temperature distribution with PBHE has been coupled in such a way that it eliminates metabolic heat generation. The study has been devoted to establish the comparison of thermal profile between present approach and published theoretical approach for particular initial and boundary conditions inflicted in this investigation. It has been studied that maximum temperature difference of existing approach for Fourier temperature distribution is 19.6% while in case of non-Fourier, it is 52.8%. We have validated our present analysis with experimental results and it has been observed that the temperature response based on the spatial dependent variable initial condition matches more accurately than other approaches.


Subject(s)
Body Temperature Regulation/physiology , Thermal Conductivity , Animals , Body Temperature , Hot Temperature , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL