Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(29): 9083-9087, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29745999

ABSTRACT

High temperature colloidal synthesis for obtaining thermal, colloidal and phase-stable CsPbI3 nanocrystals with near-unity quantum yield is reported. While standard perovskite synthesis reactions were carried out at 160 °C (below 200 °C), increase of another ≈100 °C enabled the alkylammonium ions to passivate the surface firmly and prevented the nanocrystals from phase transformation. This did not require any inert atmosphere storage, use of heteroatoms, specially designed ligands, or the ice cooling protocol. Either at high temperature in reaction flask or in the crude mixture or purified dispersed solution; these nanocrystals were observed stable and retained the original emission. Different spectroscopic analyses were carried out and details of the surface binding of alkyl ammonium ligands in place of surface Cs in the crystal lattice were investigated. As CsPbI3 is one of the most demanding optical materials, bringing stability by proper surface functionalization without use of secondary additives would indeed help in wide spreading of their applications.

2.
Angew Chem Int Ed Engl ; 56(30): 8746-8750, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28557185

ABSTRACT

Doping in perovskite nanocrystals adopts different mechanistic approach in comparison to widely established doping in chalcogenide quantum dots. The fast formation of perovskites makes the dopant insertions more competitive and challenging. Introducing alkylamine hydrochloride (RNH3 Cl) as a promoting reagent, precise controlled doping of MnII in CsPbCl3 perovskite nanocrystals is reported. Simply, by changing the amount of RNH3 Cl, the Mn incorporation and subsequent tuning in the excitonic as well as Mn d-d emission intensities are tailored. Investigations suggested that RNH3 Cl acted as the chlorinating source, controlled the size, and also helps in increasing the number of particles. This provided more opportunity for Mn ions to take part in reaction and occupied the appropriate lattice positions. Carrying out several reactions with varying reaction parameters, the doping conditions are optimized and the role of the promoting reagent for both doped and undoped systems are compared.

SELECTION OF CITATIONS
SEARCH DETAIL