Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Food Chem Toxicol ; : 114772, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821392

ABSTRACT

Exposure to plastic-derived estrogen-mimicking endocrine-disrupting bisphenols can have a long-lasting effect on bone health. However, gestational exposure to bisphenol A (BPA) and its analogue, bisphenol S (BPS), on offspring's bone mineralization is unclear. The effects of in-utero bisphenol exposure were examined on the offspring's bone parameters. BPA and BPS (0.0, 0.4 µg/kg bw) were administered to pregnant Wistar rats via oral gavage from gestational day 4 to 21. Maternal exposure to BPA and BPS increased bone mineral content and density in the offspring aged 30 and 90 days (P<0.05). Plasma analysis revealed that alkaline phosphatase, and Gla-type osteocalcin were significantly elevated in the BPS-exposed offspring (P<0.05). The expression of BMP1, BMP4, and their signaling mediators SMAD1 mRNAs were decreased in BPS-exposed osteoblast SaOS-2 cells (P<0.05). The expression of extracellular matrix proteins such as ALPL, COL1A1, DMP1, and FN1 were downregulated (P<0.05). Bisphenol co-incubation with noggin decreased TGF-ß1 expression, indicating its involvement in bone mineralization. Altered mineralization could be due to dysregulated expression of bone morphogenetic proteins and signalling mediators in the osteoblast cells. Thus, bisphenol exposure during gestation altered growth and bone mineralization in the offspring, possibly by modulating the expression of Smad-dependent BMP/TGF-ß1 signalling mediators.

2.
Genes (Basel) ; 15(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275604

ABSTRACT

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Renal Insufficiency, Chronic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Fibrosis
3.
Biomed Pharmacother ; 171: 116211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290253

ABSTRACT

Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Platinum
4.
Dig Liver Dis ; 56(1): 112-122, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37407321

ABSTRACT

The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Liver Neoplasms/metabolism
5.
Cell Biochem Biophys ; 82(1): 35-51, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37794302

ABSTRACT

Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.


Subject(s)
Adipose Tissue , Fatty Acids , Humans , Fatty Acids/metabolism , Adipocytes , Inflammation/metabolism , Lipid Droplet Associated Proteins/metabolism
6.
Genes (Basel) ; 14(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003013

ABSTRACT

Obesity is a condition that is characterized by the presence of excessive adipose tissue in the body. Obesity has become one of the main health concerns worldwide since it can lead to other chronic ailments, such as type 2 diabetes or fatty liver disease, and it could be an aggravating factor in infections. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression and can play an important role in controlling crucial biological processes involved in the onset of obesity, such as lipogenesis, adipogenesis, lipid metabolism, or the regulation of cytokines and chemokines. Moreover, chemical compounds present in food or food packaging can alter miRNA expression and regulate the aforementioned biological mechanisms related to diabetes onset and progression. Furthermore, therapies, such as bariatric surgery and aerobic exercise training, can also influence the expression profile of miRNAs in obesity. Therefore, the present review provides insight into the current research on the role of miRNAs in obesity and obesity-derived ailments, intending to develop novel therapies to effectively manage these disorders.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Obesity/genetics , Obesity/metabolism , Adipose Tissue/metabolism
7.
Front Endocrinol (Lausanne) ; 14: 1215353, 2023.
Article in English | MEDLINE | ID: mdl-37854189

ABSTRACT

Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-ß estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.


Subject(s)
Insulins , Placenta , Pregnancy , Female , Humans , Endocrine System , Estrogens/pharmacology , Fetal Development
8.
Nutrients ; 15(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836378

ABSTRACT

This Special Issue of Nutrients, "Influence of Maternal Diet and Environmental Factors on Fetal Development", requests articles on the roles of maternal diet and environmental factors such as microbiota, plastics, and endocrine disruptive chemicals impact fetal development [...].


Subject(s)
Diet , Fetal Development , Diet/adverse effects , Nutrients , Fetus
9.
Neurochem Int ; 171: 105627, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37827244

ABSTRACT

Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.


Subject(s)
Caffeine , Substance-Related Disorders , Humans , Micronutrients , Epigenesis, Genetic , DNA Methylation , Substance-Related Disorders/genetics , Brain , Exercise
10.
Sci Total Environ ; 904: 166775, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37660821

ABSTRACT

Prenatal exposure to endocrine-disrupting bisphenol A (BPA) shows a long-lasting programming effect on an organ's metabolic function and predisposes it to the risk of adult metabolic diseases. Although a reduced contaminant risk due to "BPA-free" exposure is proposed, limited data on a comparative assessment of gestational exposure to BPS and BPA and their effects on metaflammation in predisposing liver metabolic disease is reported. Pregnant Wistar rats were exposed to BPS and BPA (0.0, 0.4, 4.0 µg/kg bw) via gavage from gestational day 4 to 21, and effects were assessed in the 90 d male offspring. Prenatal BPS-exposed offspring showed a more obesogenic effect than BPA, including changes in body fat distribution, feed efficiency, and leptin signalling. The BPS exposure induced the adipocyte hypertrophy of visceral adipose to a greater extent than BPA. The adipose hypertrophy was augmented by tissue inflammation, endoplasmic reticulum (ER) stress, and apoptosis due to increased expression of pro-inflammatory (IL6, IL1ß, CRP, COX2) cytokines, ER stress modulator (CHOP), and apoptotic effector (Caspase 3). The enlarged, stressed, inflamed adipocytes triggered de novo lipogenesis in the bisphenol-exposed offspring liver due to increased expression of cholesterol and lipid biogenesis mediators (srebf1, fasn, acaca, PPARα) concomitant with elevated triacylglycerol (TG) and cholesterol (TC), resulted in impaired hepatic clearance of lipids. The lipogenic effects were also promoted by increased expression of HSD11ß1. BPS exposure increased absolute liver weight, discoloration, altered liver lobes more than in BPA. Liver histology showed numerous lipid droplets, and hepatocyte ballooning, upregulated ADRP expression, an increased expression of pro-inflammatory mediators (IL6, CRP, IL1ß, TNFα, COX2), enhanced lipid peroxidation in the BPS-exposed offspring's liver suggest altered metaflammation leads to microvesicular steatosis. Overall, gestational BPS exposure demonstrated a higher disruption in metabolic changes than BPA, involving excess adiposity, liver fat, inflammation, and predisposition to steatosis in the adult male offspring.


Subject(s)
Fatty Liver , Prenatal Exposure Delayed Effects , Pregnancy , Female , Rats , Male , Animals , Humans , Rats, Wistar , Cyclooxygenase 2 , Interleukin-6 , Fatty Liver/chemically induced , Fatty Liver/pathology , Inflammation/chemically induced , Cholesterol , Hypertrophy , Benzhydryl Compounds/toxicity , Prenatal Exposure Delayed Effects/chemically induced
11.
Mol Cell Biochem ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37742314

ABSTRACT

The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.

12.
Biomed Pharmacother ; 167: 115591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774669

ABSTRACT

Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.

13.
Front Nutr ; 10: 1221438, 2023.
Article in English | MEDLINE | ID: mdl-37614749

ABSTRACT

Metabolic syndrome (MetS) is a multifaceted condition that increases the possibility of developing atherosclerotic cardiovascular disease. MetS includes obesity, hypertension, dyslipidemia, hyperglycemia, endothelial dysfunction, and platelet hyperactivity. There is a concerning rise in the occurrence and frequency of MetS globally. The rising incidence and severity of MetS need a proactive, multipronged strategy for identifying and treating those affected. For many MetS patients, achieving recommended goals for healthy fat intake, blood pressure control, and blood glucose management may require a combination of medicine therapy, lifestyles, nutraceuticals, and others. However, it is essential to note that lifestyle modification should be the first-line therapy for MetS. In addition, MetS requires pharmacological, nutraceutical, or other interventions. This review aimed to bring together the etiology, molecular mechanisms, and dietary strategies to combat hypertension, endothelial dysfunction, and platelet dysfunction in individuals with MetS.

14.
Front Bioeng Biotechnol ; 11: 1208547, 2023.
Article in English | MEDLINE | ID: mdl-37576994

ABSTRACT

MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.

15.
Nutrients ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37299594

ABSTRACT

Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Functional Food
16.
Front Genet ; 14: 1152110, 2023.
Article in English | MEDLINE | ID: mdl-37065488

ABSTRACT

MicroRNAs (miRNAs) are highly conserved, small non-coding RNA molecules (∼21 nucleotides) that regulate numerous biological processes, including developmental timing, hematopoiesis, organogenesis, apoptosis, cell differentiation, and proliferation either by mRNA degradation or translation repression. Since eye physiology requires a perfect orchestration of complex regulatory networks, an altered expression of key regulatory molecules such as miRNAs potentially leads to numerous eye disorders. In recent years, comprehensive progress has been made in demonstrating the precise roles of miRNAs, emphasizing their potential use in diagnostic and therapeutic purposes of chronic human diseases. Thus, this review explicitly illustrates the regulatory roles of miRNAs in four common eye disorders, such as cataract, glaucoma, macular degeneration, and uveitis, and their application in disease management.

17.
Infection ; 51(6): 1603-1618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36906872

ABSTRACT

PURPOSE: The COVID-19 pandemic caused by the novel Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has put the world in a medical crisis for the past three years; nearly 6.3 million lives have been diminished due to the virus outbreak. This review aims to update the recent findings on COVID-19 infections from an epigenetic scenario and develop future perspectives of epi-drugs to treat the disease. METHODS: Original research articles and review studies related to COVID-19 were searched and analyzed from the Google Scholar/PubMed/Medline databases mainly between 2019 and 2022 to brief the recent work. RESULTS: Numerous in-depth studies of the mechanisms used by SARS-CoV-2 have been going on to minimize the consequences of the viral outburst. Angiotensin-Converting Enzyme 2 receptors and Transmembrane serine protease 2 facilitate viral entry to the host cells. Upon internalization, it uses the host machinery to replicate viral copies and alter the downstream regulation of the normal cells, causing infection-related morbidities and mortalities. In addition, several epigenetic regulations such as DNA methylation, acetylation, histone modifications, microRNA, and other factors (age, sex, etc.) are responsible for the regulations of viral entry, its immune evasion, and cytokine responses also play a major modulatory role in COVID-19 severity, which has been discussed in detail in this review. CONCLUSION: Findings of epigenetic regulation of viral pathogenicity open a new window for epi-drugs as a possible therapeutical approach against COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokine Release Syndrome , Pandemics , Epigenesis, Genetic
18.
Biomed Pharmacother ; 162: 114606, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36989716

ABSTRACT

Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.


Subject(s)
Antioxidants , Oxidative Stress , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Apoptosis , Glutathione/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism
19.
Front Genet ; 14: 1137017, 2023.
Article in English | MEDLINE | ID: mdl-36896239

ABSTRACT

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules capable of regulating gene expression at the post-transcriptional level either by translational inhibition or mRNA degradation and have recently been importantly related to the diagnosis and prognosis of the most relevant endocrine disorders. The endocrine system comprises various highly vascularized ductless organs regulating metabolism, growth and development, and sexual function. Endocrine disorders constitute the fifth principal cause of death worldwide, and they are considered a significant public health problem due to their long-term effects and negative impact on the patient's quality of life. Over the last few years, miRNAs have been discovered to regulate various biological processes associated with endocrine disorders, which could be advantageous in developing new diagnostic and therapeutic tools. The present review aims to provide an overview of the most recent and significant information regarding the regulatory mechanism of miRNAs during the development of the most relevant endocrine disorders, including diabetes mellitus, thyroid diseases, osteoporosis, pituitary tumors, Cushing's syndrome, adrenal insufficiency and multiple endocrine neoplasia, and their potential implications as disease biomarkers.

20.
J Nutr ; 153(1): 96-105, 2023 01.
Article in English | MEDLINE | ID: mdl-36913483

ABSTRACT

BACKGROUND: Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES: We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS: Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS: Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 µM, P ≤ 0.05) and urine (-19.1 µM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS: Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).


Subject(s)
Gastrointestinal Microbiome , Solanum lycopersicum , Adult , Humans , Overweight , Cross-Over Studies , Obesity , Methylamines/metabolism , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...