Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Elife ; 132024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331523

ABSTRACT

Understanding the function of sleep requires studying the dynamics of brain activity across whole-night sleep and their transitions. However, current gold standard polysomnography (PSG) has limited spatial resolution to track brain activity. Additionally, previous fMRI studies were too short to capture full sleep stages and their cycling. To study whole-brain dynamics and transitions across whole-night sleep, we used an unsupervised learning approach, the Hidden Markov model (HMM), on two-night, 16 hr fMRI recordings of 12 non-sleep-deprived participants who reached all PSG-based sleep stages. This method identified 21 recurring brain states and their transition probabilities, beyond PSG-defined sleep stages. The HMM trained on one night accurately predicted the other, demonstrating unprecedented reproducibility. We also found functionally relevant subdivisions within rapid eye movement (REM) and within non-REM 2 stages. This study provides new insights into brain dynamics and transitions during sleep, aiding our understanding of sleep disorders that impact sleep transitions.


Subject(s)
Brain , Magnetic Resonance Imaging , Polysomnography , Sleep Stages , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Brain/diagnostic imaging , Adult , Male , Female , Polysomnography/methods , Sleep Stages/physiology , Sleep/physiology , Young Adult , Markov Chains , Reproducibility of Results
2.
bioRxiv ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39149368

ABSTRACT

Sleep research and sleep medicine have benefited from the use of polysomnography but have also suffered from an overreliance on the conventional, polysomnography-defined sleep stages. For example, reports of sleep-specific brain activity patterns have, with few exceptions, been constrained by assessing brain function as it relates to the conventional sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. If undiscovered brain activity patterns exist during sleep, then removing the constraint of a stage-specific analysis may uncover them. The current study used all-night functional magnetic resonance imaging sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to begin to search for new brain states. It was hypothesized that, during sleep compared to wakefulness, corticocortical functional correlations would decrease. Functional correlation values calculated in a window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis. The hypothesis was supported using both correlation matrices of brain networks and single seed-region analyses showing whole-brain maps. This represents a novel approach to studying the neuroanatomical correlates of sleep with high spatial resolution by defining sleep in a way that was independent from the conventional sleep stages. This work provides initial evidence to justify searching for sleep stages that are more neuroanatomically localized and unrelated to the conventional sleep stages.

3.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979303

ABSTRACT

Complex behavior entails a balance between taking in sensory information from the environment and utilizing previously learned internal information. Experiments in behaving mice have demonstrated that the brain continually alternates between outward and inward modes of cognition, switching its mode of operation every few seconds. Further, each state transition is marked by a stereotyped cascade of neuronal spiking that pervades most forebrain structures. Here we analyzed large fMRI datasets to demonstrate that a similar switching mechanism governs the operation of the human brain. We found that human brain activity was punctuated every several seconds by coherent, propagating waves emerging in the exteroceptive sensorimotor regions and terminating in the interoceptive default mode network. As in the mouse, the issuance of such events coincided with fluctuations in pupil size, indicating a tight relationship with arousal fluctuations, and this phenomenon occurred across behavioral states. Strikingly, concurrent measurement of human performance in a visual memory task indicated that each cycle of propagating fMRI waves sequentially promoted the encoding of semantic information and self-directed retrieval of memories. Together, these findings indicate that human cognitive performance is governed by autonomous switching between exteroceptive and interoceptive states. This apparently conserved feature of mammalian brain physiology bears directly on the integration of sensory and mnemonic information during everyday behavior.

4.
medRxiv ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38903093

ABSTRACT

Understanding the function of sleep requires studying the dynamics of brain activity across whole-night sleep and their transitions. However, current gold standard polysomnography (PSG) has limited spatial resolution to track brain activity. Additionally, previous fMRI studies were too short to capture full sleep stages and their cycling. To study whole-brain dynamics and transitions across whole-night sleep, we used an unsupervised learning approach, the Hidden Markov model (HMM), on two-night, 16-hour fMRI recordings of 12 non-sleep-deprived participants who reached all PSG-based sleep stages. This method identified 21 recurring brain states and their transition probabilities, beyond PSG-defined sleep stages. The HMM trained on one night accurately predicted the other, demonstrating unprecedented reproducibility. We also found functionally relevant subdivisions within rapid eye movement (REM) and within non-REM 2 stages. This study provides new insights into brain dynamics and transitions during sleep, aiding our understanding of sleep disorders that impact sleep transitions. Teaser: An unsupervised learning model provides new insights into brain activity during human nocturnal sleep.

5.
Brain Commun ; 6(3): fcae158, 2024.
Article in English | MEDLINE | ID: mdl-38818331

ABSTRACT

Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.

6.
PNAS Nexus ; 3(4): pgae078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562584

ABSTRACT

Neurons in the hippocampus exhibit spontaneous spiking activity during rest that appears to recapitulate previously experienced events. While this replay activity is frequently linked to memory consolidation and learning, the underlying mechanisms are not well understood. Recent large-scale neural recordings in mice have demonstrated that resting-state spontaneous activity is expressed as quasi-periodic cascades of spiking activity that pervade the forebrain, with each cascade engaging a high proportion of recorded neurons. Hippocampal ripples are known to be coordinated with cortical dynamics; however, less is known about the occurrence of replay activity relative to other brain-wide spontaneous events. Here we analyzed responses across the mouse brain to multiple viewings of natural movies, as well as subsequent patterns of neural activity during rest. We found that hippocampal neurons showed time-selectivity, with individual neurons responding consistently during particular moments of the movie. During rest, the population of time-selective hippocampal neurons showed both forward and time-reversed replay activity that matched the sequence observed in the movie. Importantly, these replay events were strongly time-locked to brain-wide spiking cascades, with forward and time-reversed replay activity associated with distinct cascade types. Thus, intrinsic hippocampal replay activity is temporally structured according to large-scale spontaneous physiology affecting areas throughout the forebrain. These findings shed light on the coordination between hippocampal and cortical circuits thought to be critical for memory consolidation.

7.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Article in English | MEDLINE | ID: mdl-38247051

ABSTRACT

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Subject(s)
Brain , Image Processing, Computer-Assisted , Consensus , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/metabolism , Head , Magnetic Resonance Imaging/methods , Algorithms , Brain Mapping/methods
8.
Magn Reson Med ; 91(1): 252-265, 2024 01.
Article in English | MEDLINE | ID: mdl-37769229

ABSTRACT

PURPOSE: Accelerate multislice 2D MRI by using RF pulses that simultaneously act on different slices to combine contrast preparation and image acquisition. THEORY AND METHODS: MRI applications often require the use of multiple RF pulses to generate desired contrast and prepare the signal for readout. Examples are the use of inversion prepulses to generate T1 contrast, or the use of spin-echo preparations to generate T2 or diffusion contrast. In multislice MRI, this separation of contrast preparation and readout can render scans time-inefficient and lengthy. We introduce a class of pulse sequences that overcomes this inefficiency by combining contrast preparation and signal readout. This is accomplished by using RF pulses that manipulate the magnetization of multiple slices simultaneously and a gradient crusher scheme that selects a target slice for readout. RESULTS: Feasibility of the method was demonstrated for spin echo-based measurement of water diffusion and tissue pulsation in human brain at 3 T. Increases in time-efficiency and reductions in scan time were highly dependent on specific implementation and reached as high as 25% and 53%, respectively. CONCLUSION: A novel approach to multislice MRI is demonstrated that reduces scan time for specific applications.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Head
9.
bioRxiv ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37986990

ABSTRACT

The neural encoding of sensory stimuli is subject to the brain's internal circuit dynamics. Recent work has demonstrated that the resting brain exhibits widespread, coordinated activity that plays out over multisecond timescales in the form of quasi-periodic spiking cascades. Here we demonstrate that these intrinsic dynamics persist during the presentation of visual stimuli and markedly influence the efficacy of feature encoding in the visual cortex. During periods of passive viewing, the sensory encoding of visual stimuli was determined by quasi-periodic cascade cycle evolving over several seconds. During this cycle, high efficiency encoding occurred during peak arousal states, alternating in time with hippocampal ripples, which were most frequent in low arousal states. However, during bouts of active locomotion, these arousal dynamics were abolished: the brain remained in a state in which visual coding efficiency remained high and ripples were absent. We hypothesize that the brain's observed dynamics during awake, passive viewing reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function.

10.
Sleep ; 46(12)2023 12 11.
Article in English | MEDLINE | ID: mdl-37788383

ABSTRACT

Approximately half of adolescents encounter a mismatch between their sleep patterns on school days and free days, also referred to as "social jetlag." This condition has been linked to various adverse outcomes, such as poor sleep, cognitive deficits, and mental disorders. However, prior research was unsuccessful in accounting for other variables that are correlated with social jetlag, including sleep duration and quality. To address this limitation, we applied a propensity score matching method on a sample of 6335 11-12-year-olds from the 2-year follow-up (FL2) data of the Adolescent Brain Cognitive Development study. We identified 2424 pairs of participants with high sleep-corrected social jetlag (SJLsc, over 1 hour) and low SJLsc (<= 1 hour) at FL2 (1728 pairs have neuroimaging data), as well as 1626 pairs at 3-year follow-up (FL3), after matching based on 11 covariates including socioeconomic status, demographics, and sleep duration and quality. Our results showed that high SJLsc, as measured by the Munich Chronotype Questionnaire, was linked to reduced crystallized intelligence (CI), lower school performance-grades, and decreased functional connectivity between cortical networks and subcortical regions, specifically between cingulo-opercular network and right hippocampus. Further mediation and longitudinal mediation analyses revealed that this connection mediated the associations between SJLsc and CI at FL2, and between SJLsc and grades at both FL2 and FL3. We validated these findings by replicating these results using objective SJLsc measurements obtained via Fitbit watches. Overall, our study highlights the negative association between social jetlag and CI during early adolescence.


Subject(s)
Circadian Rhythm , Mental Health , Adolescent , Humans , Sleep , Jet Lag Syndrome , Cognition , Surveys and Questionnaires , Brain/diagnostic imaging
11.
medRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37886541

ABSTRACT

Background and objectives: Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods: A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results: 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010µl, range 13-9888 vs median 267µl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183µl, range 270-9888 vs median 321µl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion: CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.

12.
medRxiv ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37502864

ABSTRACT

Approximately half of adolescents encounter a mismatch between their sleep patterns on school days and free days, also referred to as "social jetlag". This condition has been linked to various adverse outcomes, such as poor sleep, cognitive deficits, and mental disorders. However, prior research was unsuccessful in accounting for other variables that are correlated with social jetlag, including sleep duration and quality. To address this limitation, we applied a propensity score matching method on a sample of 8853 11-12-year-olds from the two-year follow-up (FL2) data of the Adolescent Brain Cognitive Development (ABCD) study. We identified 3366 pairs of participants with high sleep-corrected social jetlag (SJLsc, over 1 hour) and low SJLsc (<= 1 hour) at FL2, as well as 1277 pairs at three-year follow-up (FL3), after matching based on 11 covariates including socioeconomic status, demographics, and sleep duration and quality. Our results showed that high SJLsc, as measured by the Munich Chronotype Questionnaire, was linked to reduced crystallized intelligence, lower school performance - grades, and decreased functional connectivity between cortical networks and subcortical regions, specifically between cingulo-opercular network and right hippocampus (cerc-hprh). Further mediation and longitudinal mediation analyses revealed that cerc-hprh connection mediated the associations between SJLsc and crystallized intelligence at FL2, and between SJLsc and grades at both FL2 and FL3. We validated these findings by replicating these results using objective SJLsc measurements obtained via Fitbit watches. Overall, our study highlights the negative association between social jetlag and crystallized intelligence during early adolescence.

13.
ArXiv ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461418

ABSTRACT

This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.

14.
Neuroimage ; 270: 119992, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36858332

ABSTRACT

MR images of the effective relaxation rate R2* and magnetic susceptibility χ derived from multi-echo T2*-weighted (T2*w) MRI can provide insight into iron and myelin distributions in the brain, with the potential of providing biomarkers for neurological disorders. Quantification of R2* and χ at submillimeter resolution in the cortex in vivo has been difficult because of challenges such as head motion, limited signal to noise ratio, long scan time, and motion related magnetic field fluctuations. This work aimed to improve the robustness for quantifying intracortical R2* and χ and analyze the effects from motion, spatial resolution, and cortical orientation. T2*w data was acquired with a spatial resolution of 0.3 × 0.3 × 0.4 mm3 at 7 T and downsampled to various lower resolutions. A combined correction for motion and B0 changes was deployed using volumetric navigators. Such correction improved the T2*w image quality rated by experienced image readers and test-retest reliability of R2* and χ quantification with reduced median inter-scan differences up to 10 s-1 and 5 ppb, respectively. R2* and χ near the line of Gennari, a cortical layer high in iron and myelin, were as much as 10 s-1 and 10 ppb higher than the region at adjacent cortical depth. In addition, a significant effect due to the cortical orientation relative to the static field (B0) was observed in χ with a peak-to-peak amplitude of about 17 ppb. In retrospectively downsampled data, the capability to distinguish different cortical depth regions based on R2* or χ contrast remained up to isotropic 0.5 mm resolution. This study highlights the unique characteristics of R2* and χ along the cortical depth at submillimeter resolution and the need for motion and B0 corrections for their robust quantification in vivo.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Reproducibility of Results , Retrospective Studies , Magnetic Resonance Imaging/methods , Motion
15.
Neuroimage ; 264: 119720, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36332366

ABSTRACT

Resting-state functional magnetic resonance imaging (rsfMRI) allows the study of functional brain connectivity based on spatially structured variations in neuronal activity. Proper evaluation of connectivity requires removal of non-neural contributions to the fMRI signal, in particular hemodynamic changes associated with autonomic variability. Regression analysis based on autonomic indicator signals has been used for this purpose, but may be inadequate if neuronal and autonomic activities covary. To investigate this potential co-variation, we performed rsfMRI experiments while concurrently acquiring electroencephalography (EEG) and autonomic indicator signals, including heart rate, respiratory depth, and peripheral vascular tone. We identified a recurrent and systematic spatiotemporal pattern of fMRI (named as fMRI cascade), which features brief signal reductions in salience and default-mode networks and the thalamus, followed by a biphasic global change with a sensory-motor dominance. This fMRI cascade, which was mostly observed during eyes-closed condition, was accompanied by large EEG and autonomic changes indicative of arousal modulations. Importantly, the removal of the fMRI cascade dynamics from rsfMRI diminished its correlations with various signals. These results suggest that the rsfMRI correlations with various physiological and neural signals are not independent but arise, at least partly, from the fMRI cascades and associated neural and physiological changes at arousal modulations.


Subject(s)
Brain Mapping , Rest , Humans , Brain Mapping/methods , Rest/physiology , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology
16.
Neuroimage ; 258: 119362, 2022 09.
Article in English | MEDLINE | ID: mdl-35688316

ABSTRACT

Cerebrospinal fluid (CSF) provides physical protection to the central nervous system as well as an essential homeostatic environment for the normal functioning of neurons. Additionally, it has been proposed that the pulsatile movement of CSF may assist in glymphatic clearance of brain metabolic waste products implicated in neurodegeneration. In awake humans, CSF flow dynamics are thought to be driven primarily by cerebral blood volume fluctuations resulting from a number of mechanisms, including a passive vascular response to blood pressure variations associated with cardiac and respiratory cycles. Recent research has shown that mechanisms that rely on the action of vascular smooth muscle cells ("cerebrovascular activity") such as neuronal activity, changes in intravascular CO2, and autonomic activation from the brainstem, may lead to CSF pulsations as well. Nevertheless, the relative contribution of these mechanisms to CSF flow remains unclear. To investigate this further, we developed an MRI approach capable of disentangling and quantifying CSF flow components of different time scales associated with these mechanisms. This approach was evaluated on human control subjects (n = 12) performing intermittent voluntary deep inspirations, by determining peak flow velocities and displaced volumes between these mechanisms in the fourth ventricle. We found that peak flow velocities were similar between the different mechanisms, while displaced volumes per cycle were about a magnitude larger for deep inspirations. CSF flow velocity peaked at around 10.4 s (range 7.1-14.8 s, n = 12) following deep inspiration, consistent with known cerebrovascular activation delays for this autonomic challenge. These findings point to an important role of cerebrovascular activity in the genesis of CSF pulsations. Other regulatory triggers for cerebral blood flow such as autonomic arousal and orthostatic challenges may create major CSF pulsatile movement as well. Future quantitative comparison of these and possibly additional types of CSF pulsations with the proposed approach may help clarify the conditions that affect CSF flow dynamics.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Brain/physiology , Brain Stem , Cerebrospinal Fluid/physiology , Cerebrovascular Circulation/physiology , Humans , Pulsatile Flow/physiology
17.
NMR Biomed ; 35(8): e4730, 2022 08.
Article in English | MEDLINE | ID: mdl-35297114

ABSTRACT

Manually segmenting multiple sclerosis (MS) cortical lesions (CLs) is extremely time consuming, and past studies have shown only moderate inter-rater reliability. To accelerate this task, we developed a deep-learning-based framework (CLAIMS: Cortical Lesion AI-Based Assessment in Multiple Sclerosis) for the automated detection and classification of MS CLs with 7 T MRI. Two 7 T datasets, acquired at different sites, were considered. The first consisted of 60 scans that include 0.5 mm isotropic MP2RAGE acquired four times (MP2RAGE×4), 0.7 mm MP2RAGE, 0.5 mm T2 *-weighted GRE, and 0.5 mm T2 *-weighted EPI. The second dataset consisted of 20 scans including only 0.75 × 0.75 × 0.9 mm3 MP2RAGE. CLAIMS was first evaluated using sixfold cross-validation with single and multi-contrast 0.5 mm MRI input. Second, the performance of the model was tested on 0.7 mm MP2RAGE images after training with either 0.5 mm MP2RAGE×4, 0.7 mm MP2RAGE, or alternating the two. Third, its generalizability was evaluated on the second external dataset and compared with a state-of-the-art technique based on partial volume estimation and topological constraints (MSLAST). CLAIMS trained only with MP2RAGE×4 achieved results comparable to those of the multi-contrast model, reaching a CL true positive rate of 74% with a false positive rate of 30%. Detection rate was excellent for leukocortical and subpial lesions (83%, and 70%, respectively), whereas it reached 53% for intracortical lesions. The correlation between disability measures and CL count was similar for manual and CLAIMS lesion counts. Applying a domain-scanner adaptation approach and testing CLAIMS on the second dataset, the performance was superior to MSLAST when considering a minimum lesion volume of 6 µL (lesion-wise detection rate of 71% versus 48%). The proposed framework outperforms previous state-of-the-art methods for automated CL detection across scanners and protocols. In the future, CLAIMS may be useful to support clinical decisions at 7 T MRI, especially in the field of diagnosis and differential diagnosis of MS patients.


Subject(s)
Deep Learning , Multiple Sclerosis , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Reproducibility of Results
18.
Mult Scler ; 28(9): 1351-1363, 2022 08.
Article in English | MEDLINE | ID: mdl-35142571

ABSTRACT

BACKGROUND: Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE: Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS: Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS: Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION: Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.


Subject(s)
Disabled Persons , Multiple Sclerosis , White Matter , Adult , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , White Matter/pathology
19.
Neuroimage ; 249: 118888, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35017126

ABSTRACT

During sleep, slow waves of neuro-electrical activity engulf the human brain and aid in the consolidation of memories. Recent research suggests that these slow waves may also promote brain health by facilitating the removal of metabolic waste, possibly by orchestrating the pulsatile flow of cerebrospinal fluid (CSF) through local neural control over vascular tone. To investigate the role of slow waves in the generation of CSF pulsations, we analyzed functional MRI data obtained across the full sleep-wake cycle and during a waking respiratory task. This revealed a novel generating mechanism that relies on the autonomic regulation of cerebral vascular tone without requiring slow electrocortical activity or even sleep. Therefore, the role of CSF pulsations in brain waste clearance may, in part, depend on proper autoregulatory control of cerebral blood flow.


Subject(s)
Arousal/physiology , Autonomic Nervous System/physiology , Brain Waves/physiology , Cerebrospinal Fluid/physiology , Pulsatile Flow/physiology , Sleep Stages/physiology , Adult , Humans , Magnetic Resonance Imaging
20.
Hum Brain Mapp ; 43(5): 1766-1782, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34957633

ABSTRACT

Outliers in neuroimaging represent spurious data or the data of unusual phenotypes that deserve special attention such as clinical follow-up. Outliers have usually been detected in a supervised or semi-supervised manner for labeled neuroimaging cohorts. There has been much less work using unsupervised outlier detection on large unlabeled cohorts like the UK Biobank brain imaging dataset. Given its large sample size, rare imaging phenotypes within this unique cohort are of interest, as they are often clinically relevant and could be informative for discovering new processes. Here, we developed a two-level outlier detection and screening methodology to characterize individual outliers from the multimodal MRI dataset of more than 15,000 UK Biobank subjects. In primary screening, using brain ventricles, white matter, cortical thickness, and functional connectivity-based imaging phenotypes, every subject was parameterized with an outlier score per imaging phenotype. Outlier scores of these imaging phenotypes had good-to-excellent test-retest reliability, with the exception of resting-state functional connectivity (RSFC). Due to the low reliability of RSFC outlier scores, RSFC outliers were excluded from further individual-level outlier screening. In secondary screening, the extreme outliers (1,026 subjects) were examined individually, and those arising from data collection/processing errors were eliminated. A representative subgroup of 120 subjects from the remaining non-artifactual outliers were radiologically reviewed, and radiological findings were identified in 97.5% of them. This study establishes an unsupervised framework for investigating rare individual imaging phenotypes within a large neuroimaging cohort.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Neuroimaging/methods , Phenotype , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL