Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 916845, 2022.
Article in English | MEDLINE | ID: mdl-35968099

ABSTRACT

Cultivated sunflower holds a very narrow genetic base and the efficient utilization of available genetic diversity is very important for a successful breeding program. In the present study, 109 sunflower genotypes were assessed for diversity paneling through a combined approach of morphological and molecular markers analysis. Morphological parameters including days to flower initiation, days to flower completion, plant height, stem curvature, number of leaves per plant, leaf area, head diameter, hundred seed weight, and seed yield per plant were studied. Simple sequence repeats (40 DNA markers) were deployed for diversity profiling. Data were analyzed by both univariate and multivariate statistics. SD and coefficient of variation confirm the presence of significant amounts of genetic variation for all the morphological parameters. Cluster Analysis and Principal Component Analysis further confirm the presence of distinct grouping patterns in the studied material. Cluster analysis of both morphological and molecular analysis revealed that restorer lines tend to group separately from A, B, and open-pollinated lines. Further grouping, at the sub-cluster level, revealed six distinct sub-clusters in each of the two major clusters. In total, 12 genotypes, 6 CMS lines (CMS-HAP-12, CMS-HAP-54, CMS-HAP-56, CMS-HAP-99, CMS-HAP-111, and CMS-HAP-112) and 6 restorer lines (RHP-38, RHP-41, RHP-53, RHP-68, RHP-69, and RHP-71) could be used as potential parents for hybrid development. As genotypes of similar genetic backgrounds tend to group closer, it is deduced that one genotype with the highest seed yield per plant could be used for further hybrid breeding programs in sunflowers.

2.
PLoS One ; 17(2): e0264269, 2022.
Article in English | MEDLINE | ID: mdl-35213642

ABSTRACT

The sucrose synthase (SS) is an important enzyme family which play a vital role in sugar metabolism to improve the fruit quality of the plants. In many plant species, the members of SS family have been investigated but the detailed information is not available in legumes particularly and Glycine max specifically. In the present study, we found thirteen SS members (GmSS1-GmSS13) in G. max genome. High conserved regions were present in the GmSS sequences that may due to the selection pressure during evolutionary events. The segmental duplication was the major factor to increase the number of GmSS family members. The identified thirteen GmSS genes were divided into Class I, Class II and Class III with variable numbers of genes in each class. The protein interaction of GmSS gave the co-expression of sucrose synthase with glucose-1-phosphate adenylyltransferase while SLAC and REL test found number of positive sites in the coding sequences of SS family members. All the GmSS family members except GmSS7 and few of class III members, were highly expressed in all the soybean tissues. The expression of the class I members decreased during seed development, whireas, the class II members expression increased during the seed developing, may involve in sugar metabolism during seed development. Solexa sequencing libraries of acidic condition (pH 4.2) stress samples showed that the expression of class I GmSS genes increased 1- to 2-folds in treated samples than control. The differential expression pattern was observed between the members of a paralogous. This study provides detailed genome-wide analysis of GmSS family in soybean that will provide new insights for future evolutionary and soybean breeding to improve the plant growth and development.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucosyltransferases , Glycine max , Seeds , Soybean Proteins , Stress, Physiological , Genome-Wide Association Study , Glucosyltransferases/biosynthesis , Glucosyltransferases/genetics , Seeds/enzymology , Seeds/genetics , Soybean Proteins/biosynthesis , Soybean Proteins/genetics , Glycine max/enzymology , Glycine max/genetics
3.
PLoS One ; 17(2): e0263978, 2022.
Article in English | MEDLINE | ID: mdl-35192653

ABSTRACT

Salinity in soil and water is one of the environmental factors that severely hinder the crop growth and production particularly in arid and semi-arid regions. A pot experiment was conducted to investigate the impact of salinity levels (1.5 dS m-1, 3.5 dS m-1, 7.5 dS m-1 and 11.5 dS m-1) on emergence, growth and biochemical traits of moringa landraces under completely randomized design having three replications. Four landraces of Moringa oleifera (Faisalabad black seeded moringa [MFB], Patoki black seeded moringa [MPB], Faisalabad white seeded moringa [MFW] and Rahim Yar Khan black seeded moringa [MRB]) were selected for experimentation. All the salinity levels significantly affected the emergence parameters (time to emergence start, time to 50% emergence, mean emergence time, emergence index and final emergence percentage) of moringa landraces. However, 1.5 dS m-1 and 3.5 dS m-1 were found more favorable. Higher salinity levels (7.5 dS m-1 and 11.5 dS m-1) significantly minimized the root surface area, root projected area, root volume and root density as compared to 1.5 dS m-1, 3.5 dS m-1. Number of branches, leaves, leaflets and leaf length were also adversely affected by 7.5 dS m-1 and 11.5 dS m-1. Maximum seedling fresh and dry weights, and seedling length were recorded at 1.5 dS m-1 followed by 3.5 dS m-1. Chlorophyll a and b contents, carotenoids and membrane stability index were also observed highest at salinity level of 1.5 dS m-1. In case of moringa landraces, MRB performed better regarding emergence attributes, growth parameters, and biochemical analysis followed by MFW as compared to MFB and MPB. Moringa landraces i.e. MRB and MFW were found more tolerant to salinity stress as compared to MFB and MPB.


Subject(s)
Moringa oleifera/metabolism , Salt Tolerance , Carotenoids/metabolism , Chlorophyll/metabolism , Moringa oleifera/growth & development , Plant Components, Aerial/growth & development , Plant Components, Aerial/metabolism , Soil/chemistry
4.
PLoS One ; 17(2): e0263456, 2022.
Article in English | MEDLINE | ID: mdl-35139111

ABSTRACT

The buffering capacity of the soil is a very important property of the soil, which determines the ability of the soil to resist external influences, especially changes in pH and thus create good living conditions for plants and microorganisms in the soil. The buffering capacity thus significantly contributes to maintaining the health and quality of the soil. Buffering capacity is an important indicator of soil quality, because it is related to the overall condition of the soil ecosystem and other soil properties. The goal of this paper is to determine the effect of applying different soil amendments on the soils, 10 years after application. We compared the effect of 6 different treatments in closed plots: Natural conditions (N = control); Bare soil (B); Straw mulching (S); Pine mulch (P); TerraCottem hydroabsorbent polymers (H); Prescribed burn (F); and Sewage sludge (M). Our results have shown that the application of different amedments leads to an effect on the plowing capacity of the soil. While in the case of the control variant (Natural conditions, N) the buffering capacity of the soil was measured at 144.93 ± 0.25, the addition of different amendments decreased the buffering capacity in the following order: Bare soil (B) 142.73±0.21 > TerraCotem hydroaborbent polymer (H) 142.23±.15 > Pine mulch (P) 140.40±0.30, Prescribed burn (F) 138.20±0.30, Sludge (S) 127.47±0.15. In the case of all variants, these are statistically significant differences (p ≤ 0.05). Thus, soil amendments have been shown to have a statistically significant effect on soil buffering capacity.


Subject(s)
Environmental Restoration and Remediation/methods , Soil/chemistry , Biodegradation, Environmental , Buffers , Ecosystem , Humans , Pinus/chemistry , Pinus/physiology , Sewage/chemistry , Soil Pollutants/chemistry , Spain , Waste Disposal Facilities
5.
Plants (Basel) ; 11(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35161240

ABSTRACT

Population growth, food shortages, climate change and water scarcity are some of the frightening challenges being confronted in today's world. Water deficit or drought stress has been considered a severe limitation for the productivity of rice, a widely popular nutritive cereal crop and the staple food of a large portion of the population. A key stage in crop growth is seed emergence, which is mostly constrained by abiotic elements such as high temperatures, soil crusting and low water potential, which are responsible for poor stand establishment. Seed priming is a pre-sowing treatment of seeds that primes them to a physiological state that allows them to emerge more proficiently. The purpose of this study was to investigate the potential of leaf extracts from local and exotic moringa landraces as seed priming agents in rice cultivated under water deficit (75% field capacity) and control conditions (100% field capacity). Rice seeds were placed in an aerated solution of moringa leaf extract (MLE) at 3% from three obtained landraces (Faisalabad, Multan and an exotic landrace of India). The results obtained from the experimentation show that the water deficit regime adversely affected the studied indicators including emergence and growth attributes as well as physiological parameters. Among the priming agents, MLE from the Faisalabad landrace significantly improved the speed and spread of emergence of rice seedlings (time to start emergence at 23%, emergence index at 75%, mean emergence time at 3.58% and final emergence percentage at 46%). All the priming agents enhanced the growth, photosynthetic pigments, gas exchange parameters and antioxidant activities, particularly under the water deficit regime, but the maximum improvement was recorded by the MLE from the Faisalabad landrace. Therefore, the MLE of the Faisalabad landrace can be productively used to boost the seedling establishment and growth of rice grown under normal and water deficit conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...