Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(8): e23101, 2023 08.
Article in English | MEDLINE | ID: mdl-37486603

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.


Subject(s)
Neoplasms , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Fibroblasts/metabolism , Fibrosis
2.
Semin Cancer Biol ; 86(Pt 2): 69-80, 2022 11.
Article in English | MEDLINE | ID: mdl-36064086

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.


Subject(s)
Carcinoma, Pancreatic Ductal , Chemokines , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Chemokines/genetics , Chemokines/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Pancreatic Neoplasms
3.
Cancer Lett ; 544: 215801, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35732216

ABSTRACT

Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). Following bosentan treatment, the contrast enhancement ratio and wash-in rates in tumors were two- and nine times higher, respectively, compared to the controls, whereas the time to peak was significantly shorter (7.29 ± 1.29 min v/s 22.08 ± 5.88 min; p = 0.04). Importantly, these effects were tumor selective as the magnitudes of change for these parameters were much lower in muscles. Bosentan treatment also reduced desmoplasia and improved intratumoral distribution of high molecular weight FITC-dextran. Overall, these findings support that targeting the ET-axis can serve as a potential strategy to selectively enhance tumor perfusion and improve the delivery of therapeutic agents in pancreatic tumors.


Subject(s)
Endothelin Receptor Antagonists , Pancreatic Neoplasms , Bosentan , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Endothelins , Humans , Pancreatic Neoplasms/drug therapy , Perfusion , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...