Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Diabetologia ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743124

ABSTRACT

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).

2.
Cell Signal ; 109: 110805, 2023 09.
Article in English | MEDLINE | ID: mdl-37437828

ABSTRACT

Genetically encoded Ca2+ indicators have become widely used in cell signalling studies as they offer advantages over cell-loaded dye indicators in enabling specific cellular or subcellular targeting. Comparing responses from dye and protein-based indicators may provide information about indicator properties and cell physiology, but side-by-side recordings in cells are scarce. In this study, we compared cytoplasmic Ca2+ concentration ([Ca2+]i) changes in insulin-secreting ß-cells recorded with commonly used dyes and indicators based on circularly permuted fluorescent proteins. Total internal reflection fluorescence (TIRF) imaging of K+ depolarization-triggered submembrane [Ca2+]i increases showed that the dyes Fluo-4 and Fluo-5F mainly reported stable [Ca2+]i elevations, whereas the proteins R-GECO1 and GCaMP5G more often reported distinct [Ca2+]i spikes from an elevated level. [Ca2+]i spiking occurred also in glucose-stimulated cells. The spikes reflected Ca2+ release from the endoplasmic reticulum, triggered by autocrine activation of purinergic receptors after exocytotic release of ATP and/or ADP, and the spikes were consequently prevented by SERCA inhibition or P2Y1-receptor antagonism. Widefield imaging, which monitors the entire cytoplasm, increased the spike detection by the Ca2+ dyes. The indicator-dependent response patterns were unrelated to Ca2+ binding affinity, buffering and mobility, and probably reflects the much slower dissociation kinetics of protein compared to dye indicators. Ca2+ dyes thus report signalling within the submembrane space excited by TIRF illumination, whereas the protein indicators also catch Ca2+ events originating outside this volume. The study highlights that voltage-dependent Ca2+ entry in ß-cells is tightly linked to local intracellular Ca2+ release mediated via an autocrine route that may be more important than previously reported direct Ca2+ effects on phospholipase C or on intracellular channels mediating calcium-induced calcium release.


Subject(s)
Calcium , Insulin-Secreting Cells , Calcium/metabolism , Insulin-Secreting Cells/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Coloring Agents/metabolism , Coloring Agents/pharmacology , Calcium Signaling , Adenosine Triphosphate/metabolism
3.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36350286

ABSTRACT

The primary cilium is an organelle present in most adult mammalian cells that is considered as an antenna for sensing the local microenvironment. Here, we use intact mouse pancreatic islets of Langerhans to investigate signaling properties of the primary cilium in insulin-secreting ß-cells. We find that GABAB1 receptors are strongly enriched at the base of the cilium, but are mobilized to more distal locations upon agonist binding. Using cilia-targeted Ca2+ indicators, we find that activation of GABAB1 receptors induces selective Ca2+ influx into primary cilia through a mechanism that requires voltage-dependent Ca2+ channel activation. Islet ß-cells utilize cytosolic Ca2+ increases as the main trigger for insulin secretion, yet we find that increases in cytosolic Ca2+ fail to propagate into the cilium, and that this isolation is largely due to enhanced Ca2+ extrusion in the cilium. Our work reveals local GABA action on primary cilia that involves Ca2+ influx and depends on restricted Ca2+ diffusion between the cilium and cytosol.


Subject(s)
Calcium , Cilia , Islets of Langerhans , Receptors, GABA-B , gamma-Aminobutyric Acid , Animals , Mice , Calcium/metabolism , Cells, Cultured , Cilia/metabolism , gamma-Aminobutyric Acid/metabolism , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Receptors, GABA-B/metabolism , Cytosol
4.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Article in English | MEDLINE | ID: mdl-35241836

ABSTRACT

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Pluripotent Stem Cells , Animals , Glucose/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Mice , Pluripotent Stem Cells/metabolism
5.
Methods Mol Biol ; 2483: 319-338, 2022.
Article in English | MEDLINE | ID: mdl-35286685

ABSTRACT

A wide range of fluorescent sensors with different properties have been developed for imaging of cAMP signals in living cells and tissues. Most cAMP reporters have been designed to undergo changes in fluorescence resonance energy transfer but there are alternative techniques with advantages for certain applications. Here, we describe protocols for cAMP recordings in the sub-plasma membrane space based on detection of translocation of engineered, fluorescent protein-tagged protein kinase A subunits between the plasma membrane and the cytoplasm. Changes in reporter localization can be detected with either confocal or total internal reflection fluorescence microscopy but signal changes are more robust and image analyses less complicated with the latter technique. We show how translocation reporters can be used to study sub-plasma membrane cAMP signals, including oscillations, in insulin-secreting ß-cells stimulated with glucose and G-protein-coupled receptor agonists. We also demonstrate how translocation reporters can be combined with other sensors for simultaneous recordings of the cytosolic Ca2+ concentration, protein kinase A activity or plasma-membrane binding of the cAMP effector protein Epac2. Fluorescent translocation reporters thus provide a versatile complement to the growing cAMP imaging toolkit for elucidating sub-plasma membrane cAMP signals in various types of cells.


Subject(s)
Cyclic AMP , Insulin-Secreting Cells , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasm/metabolism , Insulin-Secreting Cells/metabolism
6.
Biochim Biophys Acta Gen Subj ; 1861(2): 246-255, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27838394

ABSTRACT

BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.


Subject(s)
Caudate Nucleus/metabolism , Cell Nucleus/metabolism , Opioid Peptides/metabolism , Protein Isoforms/metabolism , Adult , Aged , Aged, 80 and over , Amino Acids/metabolism , Animals , Cell Line, Tumor , Dynorphins/metabolism , Enkephalins/metabolism , Female , Gene Expression Regulation/physiology , Gene Silencing/physiology , Humans , Male , Middle Aged , Protein Precursors/metabolism , RNA, Messenger/metabolism , Rats , Young Adult
7.
Diabetologia ; 59(9): 1928-37, 2016 09.
Article in English | MEDLINE | ID: mdl-27338624

ABSTRACT

AIMS/HYPOTHESIS: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. METHODS: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. RESULTS: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. CONCLUSIONS/INTERPRETATION: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Glucagon/metabolism , Insulin/metabolism , Nerve Tissue Proteins/metabolism , Animals , Blotting, Western , Calcium Signaling/physiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/blood , Electrophysiology , Exocytosis/genetics , Exocytosis/physiology , Female , Glucagon-Secreting Cells/metabolism , Glucose/metabolism , Homeostasis , Humans , Immunohistochemistry , In Situ Hybridization , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Tissue Proteins/genetics , Real-Time Polymerase Chain Reaction
8.
J Endocrinol ; 223(3): 267-75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25274988

ABSTRACT

The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in ß-cells promotes ß-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. ß-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the ß-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in ß-cell FAK activity that perturbs the normal insulin secretory characteristics of ß-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Proto-Oncogene Proteins/deficiency , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Cyclic AMP/metabolism , Exocytosis/genetics , Gene Expression , Glucose/pharmacology , Immunoblotting , Insulin Receptor Substrate Proteins/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Membrane Potentials , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence/methods , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , beta Catenin/metabolism , rab3A GTP-Binding Protein/genetics
9.
Diabetes ; 60(9): 2315-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21788571

ABSTRACT

OBJECTIVE: Ghrelin reportedly restricts insulin release in islet ß-cells via the Gα(i2) subtype of G-proteins and thereby regulates glucose homeostasis. This study explored whether ghrelin regulates cAMP signaling and whether this regulation induces insulinostatic cascade in islet ß-cells. RESEARCH DESIGN AND METHODS: Insulin release was measured in rat perfused pancreas and isolated islets and cAMP production in isolated islets. Cytosolic cAMP concentrations ([cAMP](i)) were monitored in mouse MIN6 cells using evanescent-wave fluorescence imaging. In rat single ß-cells, cytosolic protein kinase-A activity ([PKA](i)) and Ca(2+) concentration ([Ca(2+)](i)) were measured by DR-II and fura-2 microfluorometry, respectively, and whole cell currents by patch-clamp technique. RESULTS: Ghrelin suppressed glucose (8.3 mmol/L)-induced insulin release in rat perfused pancreas and isolated islets, and these effects of ghrelin were blunted in the presence of cAMP analogs or adenylate cyclase inhibitor. Glucose-induced cAMP production in isolated islets was attenuated by ghrelin and enhanced by ghrelin receptor antagonist and anti-ghrelin antiserum, which counteract endogenous islet-derived ghrelin. Ghrelin inhibited the glucose-induced [cAMP](i) elevation and [PKA](i) activation in MIN6 and rat ß-cells, respectively. Furthermore, ghrelin potentiated voltage-dependent K(+) (Kv) channel currents without altering Ca(2+) channel currents and attenuated glucose-induced [Ca(2+)](i) increases in rat ß-cells in a PKA-dependent manner. CONCLUSIONS: Ghrelin directly interacts with islet ß-cells to attenuate glucose-induced cAMP production and PKA activation, which lead to activation of Kv channels and suppression of glucose-induced [Ca(2+)](i) increase and insulin release.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Ghrelin/metabolism , Insulin-Secreting Cells/metabolism , Animals , Ghrelin/pharmacology , Glucose/metabolism , Glucose/pharmacology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Mice , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology
10.
Stem Cells Dev ; 19(9): 1355-64, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20043754

ABSTRACT

Human embryonic stem (hES) cell differentiation into dopamine neurons is considered a promising strategy for cell replacement therapy in Parkinson's disease, yet the functional properties of hES cell-derived dopamine neurons remain poorly defined. The objective of this study was to characterize intracellular calcium (Ca(2+)) and sub-plasma membrane cyclic AMP-signaling properties in hES cell-derived dopamine neurons. We found that hES cell-derived dopamine neurons and neural progenitors raised Ca(2+) from intra- and extracellular compartments in response to depolarization, glutamate, ATP, and dopamine D(2) receptor activation, while undifferentiated hES cells only mobilized Ca(2+) from intracellular stores in response to ATP and D(2) receptor-induced activation. Interestingly, we also found that hES cell-derived dopamine neurons in addition to primary ventral midbrain dopamine neurons were more prone to release Ca(2+) from intracellular stores than non-dopamine neurons following treatment with the neuropeptide neurotensin. Furthermore, hES cell-derived dopamine neurons showed cAMP elevations in response to forskolin and 3-isobutyl-methylxanthine, similar to primary dopamine neurons. Taken together, these results unravel the temporal sequence by which hES cells acquire Ca(2+) and cAMP signaling competence during dopamine differentiation.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Dopamine/metabolism , Embryonic Stem Cells/physiology , Neurons/physiology , Animals , Calcium/analysis , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cyclic AMP/analysis , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Humans , Magnesium/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/drug effects , Neurons/metabolism , Neurotensin/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
11.
J Biol Chem ; 284(40): 27533-43, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19651774

ABSTRACT

Tumor cell migration plays a central role in the process of cancer metastasis. We recently identified dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) as an antimigratory phosphoprotein in breast cancer cells. Here we link this effect of DARPP-32 to Wnt-5a signaling by demonstrating that recombinant Wnt-5a triggers cAMP elevation at the plasma membrane and Thr34-DARPP-32 phosphorylation in MCF-7 cells. In agreement, both protein kinase A (PKA) inhibitors and siRNA-mediated knockdown of Frizzled-3 receptor or Galpha(s) expression abolished Wnt-5a-induced phosphorylation of DARPP-32. Furthermore, Wnt-5a induced DARPP-32-dependent inhibition of MCF-7 cell migration. Phospho-Thr-34-DARPP-32 interacted with protein phosphatase-1 (PP1) and potentiated the Wnt-5a-mediated phosphorylation of CREB, a well-known PP1 substrate, but had no effect on CREB phosphorylation by itself. Moreover, inhibition of the Wnt-5a/DARPP-32/CREB pathway, by expression of dominant negative CREB (DN-CREB), diminished the antimigratory effect of Wnt-5a-induced phospho-Thr-34-DARPP-32. Phalloidin-staining revealed that that the presence of phospho-Thr-34-DARPP-32 in MCF-7 cells results in reduced filopodia formation. In accordance, the activity of the Rho GTPase Cdc42, known to be crucial for filopodia formation, was reduced in MCF-7 cells expressing phospho-Thr-34-DARPP-32. The effects of DARPP-32 on cell migration and filopodia formation could be reversed in T47D breast cancer cells that were depleted of their endogenous DARPP-32 by siRNA targeting. Consequently, Wnt-5a activates a Frizzled-3/Galpha(s)/cAMP/PKA signaling pathway that triggers a DARPP-32- and CREB-dependent antimigratory response in breast cancer cells, representing a novel mechanism whereby Wnt-5a can inhibit breast cancer cell migration.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Cyclic AMP Response Element-Binding Protein/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins , Frizzled Receptors/metabolism , Humans , Mice , Nuclear Proteins , Phosphorylation , Phosphothreonine/metabolism , Protein Phosphatase 1/metabolism , Pseudopodia/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Wnt-5a Protein
12.
Cell Metab ; 8(1): 26-37, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18590690

ABSTRACT

Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.


Subject(s)
Cyclic AMP/physiology , Glucose/pharmacology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Calcium , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Exocytosis , Insulin Secretion , Kinetics , Mice , Microscopy, Fluorescence , Second Messenger Systems
13.
Nature ; 439(7074): 349-52, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16421574

ABSTRACT

Cyclic AMP is a ubiquitous second messenger that transduces signals from a variety of cell surface receptors to regulate diverse cellular functions, including secretion, metabolism and gene transcription. In pancreatic beta-cells, cAMP potentiates Ca2+-dependent exocytosis and mediates the stimulation of insulin release exerted by the hormones glucagon and glucagon-like peptide-1 (GLP-1) (refs 4, 5-6). Whereas Ca2+ signals have been extensively characterized and shown to involve oscillations important for the temporal control of insulin secretion, the kinetics of receptor-triggered cAMP signals is unknown. Here we introduce a new ratiometric evanescent-wave-microscopy approach to measure cAMP concentration beneath the plasma membrane, and show that insulin-secreting beta-cells respond to glucagon and GLP-1 with marked cAMP oscillations. Simultaneous measurements of intracellular Ca2+ concentration revealed that the two messengers are interlinked and reinforce each other. Moreover, cAMP oscillations are capable of inducing rapid on-off Ca2+ responses, but only sustained elevation of cAMP concentration induces nuclear translocation of the catalytic subunit of the cAMP-dependent protein kinase. Our results establish a new signalling mode for cAMP and indicate that temporal encoding of cAMP signals might constitute a basis for differential regulation of downstream cellular targets.


Subject(s)
Cyclic AMP/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon/pharmacology , Insulin/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Insulin Secretion , Protein Subunits/metabolism , Protein Transport/drug effects , Rats
14.
J Cell Sci ; 118(Pt 19): 4463-71, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16159958

ABSTRACT

Phospholipase C (PLC) regulates various cellular processes by catalyzing the formation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol from phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we have investigated the influence of Ca2+ on receptor-triggered PLC activity in individual insulin-secreting beta-cells. Evanescent wave microscopy was used to record PLC activity using green fluorescent protein (GFP)-tagged PIP2/IP3-binding pleckstrin homology domain from PLCdelta1, and the cytoplasmic Ca2+ concentration ([Ca2+]i) was simultaneously measured using the indicator Fura Red. Stimulation of MIN6 beta-cells with the muscarinic-receptor agonist carbachol induced rapid and sustained PLC activation. By contrast, only transient activation was observed after stimulation in the absence of extracellular Ca2+ or in the presence of the non-selective Ca2+ channel inhibitor La3+. The Ca2+-dependent sustained phase of PLC activity did not require voltage-gated Ca2+ influx, as hyperpolarization with diazoxide or direct Ca2+ channel blockade with nifedipine had no effect. Instead, the sustained PLC activity was markedly suppressed by the store-operated channel inhibitors 2-APB and SKF96365. Depletion of intracellular Ca2+ stores with the sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid abolished Ca2+ mobilization in response to carbachol, and strongly suppressed the PLC activation in Ca2+-deficient medium. Analogous suppressions were observed after loading cells with the Ca2+ chelator BAPTA. Stimulation of primary mouse pancreatic beta-cells with glucagon elicited pronounced [Ca2+]i spikes, reflecting protein kinase A-mediated activation of Ca2+-induced Ca2+ release via IP3 receptors. These [Ca2+]i spikes were found to evoke rapid and transient activation of PLC. Our data indicate that receptor-triggered PLC activity is enhanced by positive feedback from Ca2+ entering the cytoplasm from intracellular stores and via store-operated channels in the plasma membrane. Such amplification of receptor signalling should be important in the regulation of insulin secretion by hormones and neurotransmitters.


Subject(s)
Calcium/metabolism , Feedback, Physiological , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Isoenzymes/metabolism , Signal Transduction/physiology , Type C Phospholipases/metabolism , Animals , Boron Compounds/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels/metabolism , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cells, Cultured , Diazoxide/metabolism , Enzyme Activation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Insulin-Secreting Cells/cytology , Isoenzymes/genetics , Lanthanum/metabolism , Mice , Microscopy, Fluorescence/methods , Phospholipase C delta , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Type C Phospholipases/genetics
15.
J Biol Chem ; 279(44): 45455-61, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15316011

ABSTRACT

Hormones, such as glucagon and glucagon-like peptide-1, potently amplify nutrient stimulated insulin secretion by raising cAMP. We have studied how cAMP affects Ca(2+)-induced Ca(2+) release (CICR) in pancreatic beta-cells from mice and rats and the role of CICR in secretion. CICR was observed as pronounced Ca(2+) spikes on top of glucose- or depolarization-dependent rise of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). cAMP-elevating agents strongly promoted CICR. This effect involved sensitization of the receptors underlying CICR, because many cells exhibited the characteristic Ca(2+) spiking at low or even in the absence of depolarization-dependent elevation of [Ca(2+)](i). The cAMP effect was mimicked by a specific activator of protein kinase A in cells unresponsive to activators of cAMP-regulated guanine nucleotide exchange factor. Ryanodine pretreatment, which abolishes CICR mediated by ryanodine receptors, did not prevent CICR. Moreover, a high concentration of caffeine, known to activate ryanodine receptors independently of Ca(2+), failed to mobilize intracellular Ca(2+). On the contrary, a high caffeine concentration abolished CICR by interfering with inositol 1,4,5-trisphosphate receptors (IP(3)Rs). Therefore, the cell-permeable IP(3)R antagonist 2-aminoethoxydiphenyl borate blocked the cAMP-promoted CICR. Individual CICR events in pancreatic beta-cells were followed by [Ca(2+)](i) spikes in neighboring human erythroleukemia cells, used to report secretory events in the beta-cells. The results indicate that protein kinase A-mediated promotion of CICR via IP(3)Rs is part of the mechanism by which cAMP amplifies insulin release.


Subject(s)
Calcium Channels/physiology , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/physiology , Exocytosis , Islets of Langerhans/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Cells, Cultured , Cyclic AMP/physiology , Glucagon/pharmacology , Glucagon-Like Peptide 1 , Inositol 1,4,5-Trisphosphate Receptors , Mice , Mice, Obese , Peptide Fragments/pharmacology , Protein Precursors/pharmacology , Rats , Rats, Wistar , Ryanodine/pharmacology
16.
Cell Calcium ; 36(1): 1-9, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15126051

ABSTRACT

The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.


Subject(s)
Calcium Channels/metabolism , Calcium-Transporting ATPases/pharmacology , Calcium/metabolism , Islets of Langerhans/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Caffeine/pharmacology , Calcium/pharmacology , Calcium Channels/drug effects , Calcium Signaling/drug effects , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cell Line , Chelating Agents/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors , Islets of Langerhans/metabolism , Mice , Mice, Obese , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/drug effects , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Time Factors
17.
J Biol Chem ; 279(19): 19396-400, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15044448

ABSTRACT

Phospholipase C (PLC) is a ubiquitous enzyme involved in the regulation of a variety of cellular processes. Its dependence on Ca2+ is well recognized, but it is not known how PLC activity is affected by physiological variations of the cytoplasmic Ca2+ concentration ([Ca2+](i)). Here, we applied evanescent wave microscopy to monitor PLC activity in parallel with [Ca2+](i) in individual insulin-secreting INS-1 cells using the phosphatidylinositol 4,5-bisphosphate- and inositol 1,4,5-trisphosphate-binding pleckstrin homology domain from PLCdelta(1) fused to green fluorescent protein (PH(PLCdelta1)-GFP) and the Ca2+ indicator fura red. In resting cells, PH(PLCdelta1)-GFP was located predominantly at the plasma membrane. Activation of PLC by muscarinic or purinergic receptor stimulation resulted in PH(PLCdelta1)-GFP translocation from the plasma membrane to the cytoplasm, detected as a decrease in evanescent wave-excited PH(PLCdelta1)-GFP fluorescence. Using this translocation as a measure of PLC activity, we found that depolarization by raising extracellular [K+] triggered activation of the enzyme. This effect could be attributed both to a rise of [Ca2+](i) and to depolarization per se, because some translocation persisted during depolarization in a Ca2+-deficient medium containing the Ca2+ chelator EGTA. Moreover, oscillations of [Ca2+](i) resulting from depolarization with Ca2+ influx evoked concentration-dependent periodic activation of PLC. We conclude that PLC activity is under tight dynamic control of [Ca2+](i). In insulin-secreting beta-cells, this mechanism provides a link between Ca2+ influx and release from intracellular stores that may be important in the regulation of insulin secretion.


Subject(s)
Calcium/metabolism , Insulin/metabolism , Type C Phospholipases/metabolism , Adenosine Triphosphate/chemistry , Animals , Biological Transport , Blood Proteins/metabolism , Calcium/chemistry , Carbachol/chemistry , Cell Line , Cell Membrane/metabolism , Chelating Agents/pharmacology , Cytoplasm/metabolism , Dose-Response Relationship, Drug , Egtazic Acid/pharmacology , Green Fluorescent Proteins , Insulin Secretion , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Oscillometry , Phosphoproteins/metabolism , Potassium/chemistry , Protein Isoforms , Protein Structure, Tertiary , Protein Transport , Rats , Time Factors , Transfection , Type C Phospholipases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...