Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514460

ABSTRACT

The multiple roles of organic nanofillers in biodegradable nanocomposites (NC) with a blend-based matrix is not yet fully understood. This work highlights combination of reinforcing and structure-directing effects of chitin nanowhiskers (CNW) with different degrees of deacetylation (DA), i.e., content of primary or secondary amines on their surface, in the nanocomposite with the PCL/PLA 1:1 matrix. Of importance is the fact that aminolysis with CNW leading to chain scission of both polyesters, especially of PLA, is practically independent of DA. DA also does not influence thermal stability. At the same time, the more marked chain scission/CNW grafting for PLA in comparison to PCL, causing changes in rheological parameters of components and related structural alterations, has crucial effects on mechanical properties in systems with a bicontinuous structure. Favourable combinations of multiple effects of CNW leads to enhanced mechanical performance at low 1% content only, whereas negative effects of structural changes, particularly of changed continuity, may eliminate the reinforcing effects of CNW at higher contents. The explanation of both synergistic and antagonistic effects of structures formed is based on the correspondence of experimental results with respective basic model calculations.

2.
Materials (Basel) ; 16(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770094

ABSTRACT

In bio-nanocomposites with a poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) matrix with neat and polydopamine (PDA)-coated cellulose nanocrystals (CNCd), the use of different mixing protocols with masterbatches prepared by solution casting led to marked variation of localization, as well as reinforcing and structure-directing effects, of cellulose nanocrystals (CNC). The most balanced mechanical properties were found with an 80/20 PLA/PCL ratio, and complex PCL/CNC structures were formed. In the nanocomposites with a bicontinuous structure (60/40 and 40/60 PLA/PCL ratios), pre-blending the CNC and CNCd/PLA caused a marked increase in the continuity of mechanically stronger PLA and an improvement in related parameters of the system. On the other hand, improved continuity of the PCL phase when using a PCL masterbatch may lead to the reduction in or elimination of reinforcing effects. The PDA coating of CNC significantly changed its behavior. In particular, a higher affinity to PCL and ordering of PLA led to dissimilar structures and interface transformations, while also having antagonistic effects on mechanical properties. The negligible differences in bulk crystallinity indicate that alteration of mechanical properties may have originated from differences in crystallinity at the interface, also influenced by presence of CNC in this area. The complex effect of CNC on bio-nanocomposites, including the potential of PDA coating to increase thermal stability, is worthy of further study.

3.
Polymers (Basel) ; 15(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36771869

ABSTRACT

This contribution lays the foundation for the European database of explanted UHMWPE liners from total joint replacements. Three EU countries (Czech Republic, Italy and Spain) have joined their datasets containing anonymized patient data (such as age and BMI), manufacturer data (such as information on UHMWPE crosslinking, thermal treatment and sterilization), orthopedic evaluation (such as total duration of the implant in vivo and reasons for its revision) and material characterization (such as oxidative degradation and micromechanical properties). The joined database contains more than 500 entries, exhibiting gradual growth, and it is beginning to show interesting trends, which are discussed in our contribution, including (i) strong correlations between UHMWPE oxidative degradation, degree of crystallinity and microhardness; (ii) statistically significant differences between UHMWPE liners with different types of sterilization; (iii) realistic correlations between the extent of oxidative degradation and the observed reasons for total joint replacement failures. Our final objective and task for the future is to continuously expand the database, involving researchers from other European countries, in order to create a robust tool that will contribute to the better understanding of structure-properties-performance relationships in the field of arthroplasty implants.

4.
ACS Appl Mater Interfaces ; 13(7): 9195-9205, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33565869

ABSTRACT

The influence of magnetite nanoparticles coated with poly(acrylic acid) (Fe3O4@PAA NPs) on the organization of block copolymer thin films via a self-assembly process was investigated. Polystyrene-b-poly(4-vinylpyridine) films were obtained by the dip-coating method and thoroughly examined by X-ray reflectivity, transmission electron microscopy, atomic force microscopy, and grazing incidence small-angle scattering. Magnetic properties of the films were probed via superconducting quantum interference device (SQUID) magnetometry. It was demonstrated that due to the hydrogen bonding between P4VP and PAA, the Fe3O4@PAA NPs segregate selectively inside P4VP domains, enhancing the microphase separation process. This in turn, together with employing carefully optimized dip-coating parameters, results in the formation of hybrid thin films with highly ordered nanostructures. The addition of Fe3O4@PAA nanoparticles does not change the average interdomain spacing in the film lateral nanostructure. Moreover, it was shown that the nanoparticles can easily be removed to obtain well-ordered nanoporous templates.

5.
Carbohydr Polym ; 236: 116077, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172890

ABSTRACT

A specific feature of water-soluble polysaccharides is formation of organized structures in solutions. This study deals with an unexpected effect of 2-hydroxyethylcellulose (HEC) on structure and mechanical performance of methylcellulose (MC) films. The values of modulus with 5 and 10 % HEC content exceed those of the linear model, which indicates synergistic effect consisting in formation of ordered structures. However, higher content of HEC leads to worse properties corresponding to contribution of its lower parameters. The structural transformations are confirmed by XRD and polarized-light microscopy. Ability of HEC to support formation of ordered structures in MC solutions is indicated by rheology. Important fact is that low graphene oxide (GO) content has a high reinforcing effect on neat MC or HEC, but its presence in blends is accompanied by elimination of HEC-induced structural transformations. The results confirm complex effect of blending and GO on structure and properties of the MC/HEC system.

6.
RSC Adv ; 10(19): 11357-11364, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35495337

ABSTRACT

The application of nanofillers (NFs) in multicomponent polymer systems is accompanied by important structure-directing effects that are more marked in partially miscible systems, such as polymer-modified epoxy. This study deals with rubber-modified epoxy using different combinations of GO and amine-terminated butadiene-acrylonitrile copolymer (ATBN), including in situ and pre-made grafting. Moreover, GO grafted via planar epoxy groups or solely edge-localized carboxyls was used. It is shown that the grafted ATBN chains promote the assembly of GO-g-ATBN into nacre-mimicking lamellar structures instead of usual exfoliation in thermoplastics. This complex structure of elastically embedded GO leads to the best mechanical performance. It is obvious that a small concentration of the grafted polymer exceeds the contribution of a higher concentration of separately added ATBN. The results highlight the important effect of the degree of grafted chains and geometry of the internal structure of the self-assembled arrays and their effect on the mechanical performance.

7.
ACS Omega ; 4(4): 7128-7139, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459822

ABSTRACT

Polyaniline (PANI) and 2,5-dianilino-p-benzoquinone both are formed by oxidation of aniline in an acidic aqueous environment. The aim of this study is to understand the impact of addition of p-benzoquinone on the structure of PANI prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulfate and to elucidate the formation of low-molecular-weight byproducts. An increasing yield and size-exclusion chromatography, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, and nuclear magnetic resonance analyses of the products show that p-benzoquinone does not act as a terminating agent in the synthesis of PANI and the content of 2,5-dianilino-p-benzoquinone increases with the increasing molar concentration of p-benzoquinone in the reaction mixture, [BzQ]. Regarding the structure of PANI, Raman and UV-visible spectra show that the doping level and the charge delocalization both decrease with the increase of [BzQ], and the FTIR spectra of the PANI bases indicate an increased concentration of benzenoid units at higher [BzQ]. We explain these observations by an increasing concentration of structural defects in PANI chains and propose a 2,5-dianilino-p-benzoquinone-like structure of these defects present as pendant groups. The bands typical of 2,5-dianilino-p-benzoquinone-like moiety are observed even in the vibrational spectra of the sample prepared without addition of p-benzoquinone. This confirms in situ oxidation of aniline to p-benzoquinone within the course of the oxidation of aniline hydrochloride to PANI.

8.
Polymers (Basel) ; 11(6)2019 May 28.
Article in English | MEDLINE | ID: mdl-31141918

ABSTRACT

Reversible Diels-Alder (DA) type networks were prepared from furan and maleimide monomers of different structure and functionality. The factors controlling the dynamic network formation and their properties were discussed. Evolution of structure during both dynamic nonequilibrium and isothermal equilibrium network formation/breaking was followed by monitoring the modulus and conversion of the monomer. The gelation, postgel growth, and properties of the thermoreversible networks from tetrafunctional furan (F4) and different bismaleimides (M2) were controlled by the structure of the maleimide monomer. The substitution of maleimides with alkyl (hexamethylene bismaleimide), aromatic (diphenyl bismaleimide), and polyether substituents affects differently the kinetics and thermodynamics of the thermoreversible DA reaction, and thereby the formation of dynamic networks. The gel-point temperature was tuned in the range Tgel = 97-122 °C in the networks of the same functionality (F4-M2) with different maleimide structure. Theory of branching processes was used to predict the structure development during formation of the dynamic networks and the reasonable agreement with the experiment was achieved. The experimentally inaccessible information on the sol fraction in the reversible network was received by applying the theory. Based on the acquired results, the proper structure of a self-healing network was designed.

9.
J Phys Chem A ; 122(49): 9492-9497, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30462508

ABSTRACT

The blue thin polyaniline base film changes its color to green after immersion of the film into dibutyl phosphonate. The green color of the film converts to a greenish-blue after heating to 200 °C in air, which is characteristic for the protonated conducting form of polyaniline. This is in contrast to the "standard" polyaniline hydrochloride, which is transformed into a cross-linked polyaniline base under such conditions. To explain this unexpected observation, the interaction of polyaniline base with dibutyl phosphonate at ambient conditions and after heating to 200 °C was studied using UV-visible, FTIR and Raman spectroscopies. On the basis of these studies, we propose that the dibutyl phosphite tautomeric form of dibutyl phosphonate, which interacts with polyaniline base at 20 °C, converts to the oxidized form, dibutyl phosphate, at 200 °C and subsequently protonates the film. Quantum-chemical modeling of the interaction of polyaniline base with dibutyl phosphite and dibutyl phosphate supports this explanation.

10.
J Phys Chem B ; 122(38): 8921-8930, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30179487

ABSTRACT

The mixture of LiCl and N, N-dimethylacetamide (DMAc) is an important laboratory-scale solvent for cellulose. However, the mechanism of cellulose dissolution in DMAc/LiCl could not be fully established due to the limited knowledge about the interactions between DMAc and LiCl. To address this issue, we studied neat DMAc and DMAc/LiCl mixtures by ATR FTIR spectroscopy and quantum chemical model calculations. On the basis of the calculations, we newly assigned the bands at 1660 and 1642 cm-1 in the ν(C═O) region of the spectra to DMAc monomeric and dimeric structures. The latter are presumably stabilized by the C-H···O═C weak hydrogen bonds that prevail in both neat DMAc and DMAc/LiCl mixtures. The analysis of the concentrated (7.9 wt % of LiCl) DMAc/LiCl mixture revealed that only about half of DMAc molecules interact directly with LiCl. The resulting average stoichiometry of about 2.8:1 (DMAc:LiCl), indicating the predominance of [(DMAc)2-LiCl] and [(DMAc)3-LiCl] complexes, was found to be temperature independent. Conversely, the stoichiometry was considerably temperature sensitive for the diluted DMAc/LiCl mixture (2.6 wt % of LiCl), indicating that further DMAc molecules can be incorporated into the primary solvation shell of LiCl at higher temperatures. These results highlight the dynamic character of the DMAc/LiCl system that needs to be considered when studying the cellulose dissolution mechanism.

11.
J Mech Behav Biomed Mater ; 84: 108-115, 2018 08.
Article in English | MEDLINE | ID: mdl-29772384

ABSTRACT

Addition of high-aspect-ratio (AR) nanofillers can markedly influence flow behavior of polymer systems. As a result, application of graphite nanoplatelets (GNP) allows preparation of microfibrillar composites (MFC) based on PCL matrix reinforced with in-situ generated PLA fibrils. This work deals, for the first time, with preparation of analogous melt-drawn fibers. Unlike other blend-based fibers, the spinning and melt drawing leads to structure of deformed inclusions due to unfavorable ratio of rheological parameters of components. Subsequent moderate cold drawing of the system with dissimilar deformability of components causes strengthening with PLA fibrils. Unexpectedly, high velocity and extent of cold drawing leads to structure with low-AR inclusions, similar to the original melt-drawn blend. Extensive fast deformation of the soft PCL matrix does not allow sufficient stress transfer to rigid PLA. In spite of peculiarities found, the GNP-aided melt spinning allows facile preparation of biodegradable biocompatible fibers with wide range of diameters (80-400 µm) and parameters (2.35-18 cN/tex).


Subject(s)
Biocompatible Materials/chemistry , Graphite/chemistry , Nanostructures/chemistry , Polyesters/chemistry , Mechanical Phenomena , Models, Molecular , Molecular Conformation , Rheology
12.
Int J Oral Maxillofac Implants ; 32(6): 1221-1230, 2017.
Article in English | MEDLINE | ID: mdl-29140368

ABSTRACT

PURPOSE: The goal of this study was to compare the in vitro bioactivity in simulated body fluid (SBF) of commercially available dental implants. MATERIALS AND METHODS: Bioactivity, according to ISO 23317, of commercially available dental implants with various surface modifications (BIO-surface, SLA, SLActive, TiUnite, and OsseoSpeed) was tested in SBF for 1 and 3 weeks. Surface characterizations, especially calcium and phosphorus surface content before and after the immersion in SBF, were performed. The effect of surface treatment on bioactivity was studied. RESULTS: Differences between surfaces before immersion in SBF were confirmed by Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscope (SEM) analysis. Calcium and phosphorus surface content was increasing within the tested period in the case of two (BIO-surface and SLActive) of the five tested dental implants. Calcium-phosphate precipitation was observed by SEM, XPS, EDX, and x-ray micro­diffraction (µ-XRD) analysis. CONCLUSION: Two (BIO-surface from LASAK and SLActive from Straumann) of the five tested dental implants were found to be bioactive, according to ISO 23317. Although it is difficult to unambiguously determine the properties that have influence on the hydroxyapatite precipitation rate, multiple properties that the two surfaces have in common were found.


Subject(s)
Dental Implants , Dental Materials/chemistry , Titanium/chemistry , Body Fluids/chemistry , Calcium Phosphates/analysis , Dental Prosthesis Design , Durapatite/analysis , Humans , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , Surface Properties , X-Ray Diffraction
13.
Soft Matter ; 11(48): 9291-306, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26428943

ABSTRACT

The formation of the hydrogel poly(N-isopropylacrylamide)-clay (LAPONITE®) by redox polymerization was investigated, and the main factors governing the gel build-up were determined. The significant effect of the redox initiating system ammonium peroxodisulfate (APS) and tetramethylethylenediamine (TEMED) on gel formation and structure was established, making it possible to control the structure of the gel. Moreover, the pre-reaction stage involving the quality of the clay exfoliation in an aqueous suspension and the interaction of reaction components with the clay play a role in controlling the polymerization and gel structure. The molecular and phase structure evolution during polymerization was followed in situ by the following independent techniques: Fourier transform infrared spectroscopy (FTIR), chemorheology, small-angle X-ray scattering (SAXS) and ultraviolet-visible spectroscopy (UV/Vis). The combination of these methods enabled us to describe in detail particular progress stages during the gel formation and determine the correlation of the corresponding processes on a time and conversion scale. The mechanism of gel formation was refined based on these experimental results.

14.
Soft Matter ; 10(40): 8011-22, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25157410

ABSTRACT

Thermoresponsive polymeric surfactant CAE85 is a telechelic carboxyl group derivative of Pluronic P85 and its carboxyl end-groups undergo deprotonation into carboxylate groups upon micellization. Micelle formation and disintegration were studied here by means of small angle X-ray scattering, FTIR and Raman spectroscopy, quantum mechanical calculations and dynamical mechanical analysis. The deprotonation was observed in aqueous solutions of CAE85 for concentrations from 5 wt% to 30 wt% at temperatures above the corresponding critical micellization temperature (CMT). The most likely cause is a difference between the proton dissociation constant of the micelle (pK(m)) and the proton dissociation constant of the unimers in solution (pK(a)); our observations indicate that pKm < pK(a). For concentrations up to 15 wt%, the presence of carboxylate groups in CAE85 lowered the CMT in comparison with P85. In addition, the behavior of CAE85 was generally not thermo-reversible and reproducible upon cooling. Quantum chemical calculations showed that, in the dense micelle corona, the deprotonated states were more stable than hydrogen-bonded states of neutral molecules, which is likely to affect the equilibrium processes in the micelle. In contrast to the unmodified P85, no gelation was observed in the case of CAE85. By studying the processes at all the levels of organization from nanoscale charge formation through micellization to the macroscale process of gelation, our understanding of polymeric micelle formation may be advanced.

15.
BMC Musculoskelet Disord ; 15: 109, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24678698

ABSTRACT

BACKGROUND: At present time the number of implantations of joint replacements as well as their revisions increases. Higher demands are required on the quality and longevity of implants. The aim of this work was to determine the degree of oxidative degradation and the amount of free/residual radicals in selected ultra-high molecular weight polyethylene (UHMWPE) components of the joint replacements and demonstrate that the measured values are closely connected with quality and lifetime of the polymer components. METHODS: We tested both new (4 samples) and explanted (4 samples) UHMWPE polymers for total joint replacements. The samples were characterized by infrared spectroscopy (IR), electron spin resonance (ESR) and microhardness (MH) test. The IR measurements yielded the values of oxidation index and trans-vinylene index. The ESR measurements gave the free radicals concentration. RESULTS: In the group of new polyethylene components, we found oxidation index values ranging from 0.00-0.03 to 0.24. The trans-vinylene index values ranged from 0.044 to 0.080. The value of free radical concentration was zero in virgin and also in sample of Beznoska Company and non-zero in the other samples. In the group of explanted components, the measured values were associated with their history, micromechanical properties and performance in vivo. CONCLUSIONS: We demonstrated that measuring of oxidative damage may help the orthopaedic surgeon in estimating the quality of UHMWPE replacement component and thus radically to avoid early joint replacement failure due to worse polyethylene quality.


Subject(s)
Biocompatible Materials/chemistry , Hip Prosthesis , Knee Prosthesis , Polyethylenes/chemistry , Crystallization , Electron Spin Resonance Spectroscopy , Free Radicals/analysis , Hardness , Humans , Materials Testing , Oxidation-Reduction , Prosthesis Failure , Reoperation , Spectrophotometry, Infrared
16.
ACS Appl Mater Interfaces ; 6(2): 942-50, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24377287

ABSTRACT

In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

17.
Magn Reson Chem ; 51(5): 275-82, 2013 May.
Article in English | MEDLINE | ID: mdl-23456694

ABSTRACT

The interactions of three alcohols, namely, 2-butanol (BuOH), 3-methyl-2-butanol (MeBuOH), and 3,3-dimethyl-2-butanol (Me2BuOH) with propylene oxide octamer (PO8) and the copolymers (EO)8(PO)13(EO)8(L35) and (EO)13(PO)30(EO)13(L64) in D2O were studied using (13)C NMR spectra and relaxations and (1)H PFG NMR diffusion measurements. For L64, it was shown that the temperature at which the PO chain starts to change its conformation under dehydration decreases by 6 K for each additional methyl group in the alcohol molecule (i.e. with increasing its hydrophobicity), and the analogous conformation states are attained at temperatures approximately 10 K lower compared using ketonic analogs of the alcohols under the same conditions. Also, the first signs of L64 aggregation, according to the normalized diffusion coefficients, are at temperatures 7, 10, and 13 K lower for BuOH, MeBuOH, and Me2BuOH, respectively. These effects are much weaker for (PO)13 in L35 or nonexistent for (PO)8 in PO8, thus showing the role of cooperativity in dehydration and aggregation processes. According to diffusion measurements, the molar fraction of the alcohol hydrogen bonded to L64 increases with its hydrophobicity and, in an apparent conflict with thermodynamics, with increasing temperature at which also higher NOE can be observed. Strong hydrogen bond interaction, which is in cooperation with hydrophobic interaction, does not preclude the exchange between bound and free states of the alcohol, however. Using (13)C transverse relaxation, its correlation time is shown to be of the order of 10 ms.


Subject(s)
Alcohols/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Diffusion , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Micelles , Thermodynamics
18.
Magn Reson Chem ; 49(10): 617-26, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21898583

ABSTRACT

Interaction of octyl-phenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO, the 'classical' rare metal extraction agent) with fully ionized hydrated protons (HP) was studied in acetonitrile-d(3) using (1)H, (13)C, (31)P NMR, PFG NMR and magnetic relaxation. The experimental results were confronted with high-precision ab initio DFT calculations. Relative chemical shifts of NMR signals of CMPO (0.01 mol/L) under the presence of HP in the molar ratio ß = 0-2.0 mol/mol show binding between CMPO and HP. Self-diffusion measurements using (1)H PFG NMR demonstrate that larger complexes with higher content of CMPO are generally formed at ß < 0.75. Analyzing the collective dependence of (13)C and (31)P NMR chemical shifts on ß by the use of program LETAGROP, we obtained very good fitting for the assumed coexistence of two complexes (CMPO)(2)·HP (C(2)) and CMPO.HP (C(1)). The logarithms of the respective stabilization constants log K(i) were found to be 7.518 (C(2)) and 4.581 (C(1)). The system dynamics was studied by measuring the transverse (1)H NMR relaxation using CPMG sequence with varying delays t(p) between the π pulses in the mixtures with ß = 0.4-0.8. The following exchange correlation times were obtained: τ(10) = 2.35 × 10(-5), τ(20) = 0.82 × 10(-4), τ(21) = 0.45 × 10(-3) s. The DFT calculations support the conclusion that the complexes C(1) and C(2) are the main species in the mixtures of CMPO with HP. They also agree with the NMR and FTIR observation that the main site to which H(3) O(+) is bound is the P=O group, whereas the amide group does not form a strong bond with the ion when excess water molecules are present.


Subject(s)
Phosphines/chemistry , Protons , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Quantum Theory , Reference Standards
19.
J Phys Chem B ; 115(23): 7578-87, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21591773

ABSTRACT

Using (1)H, (13)C, and (133)Cs NMR spectra, it is shown that calix[4]arene-bis(t-octylbenzo-18-crown-6) (L) forms complexes with one (L·Cs(+)) and two (L·2Cs(+)) Cs(+) ions offered by cesium bis(1,2-dicarbollide) cobaltate (CsDCC) in nitrobenzene-d(5). The ions interact with all six oxygen atoms in the crown-ether ring and the π electrons of the calixarene aromatic moieties. According to extraction technique, the stability constant of the first complex is log ß(nb)(L·Cs(+)) = 8.8 ± 0.1. According to (133)Cs NMR spectra, the value of the equilibrium constant of the second complex is log K(nb)((2))(L·2Cs(+)) = 6.3 ± 0.2, i.e., its stabilization constant is log ß(nb)(L·2Cs(+)) = 15.1 ± 0.3. Self-diffusion measurements by (1)H pulsed-field gradient (PFG) NMR combined with density functional theory (DFT) calculations suggest that one DCC(­) ion is tightly associated with L·Cs(+), decreasing its positive charge and consequently stabilizing the second complex, L·2Cs(+). Using a saturation-transfer (133)Cs NMR technique, the correlation times τ(ex) of chemical exchange between L·Cs(+) and L·2Cs(+) as well as between L·2Cs(+) and free Cs(+) ions were determined as 33.6 and 29.2 ms, respectively.

20.
J Colloid Interface Sci ; 352(2): 415-23, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20850130

ABSTRACT

Raman, attenuated total reflectance FTIR, near-infrared spectroscopy, and DFT calculations have been used in a study of aqueous solutions of three tri-block copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) or PEO-PPO-PEO with commercial names Pluronic PE6200, PE6400 and F68. It is shown that the process of micellization as a response to increased temperature is reflected in the hydroxyl stretching region of infrared and Raman spectra, which contains information both about restructuring of water and changes of polymer chains in polymer/water aggregates. Raman spectra exhibit differences between individual Pluronics even at temperatures below the critical micellization temperature (CMT). According to the attenuated total reflection (ATR) FTIR spectra, the same five water coordination types defined by the number of donated/accepted hydrogen bonds are present in interacting water as in bulk water. It indicates that models considering mixed states of water with different hydrogen bonding environments provide appropriate descriptions of bound water both below and above the CMT. Above the CMT, aggregate hydration increases in the order PE6400 < PE6200 < F68, although that does not fully correspond to the EO/PO ratio, and points to the differences in microstructure of aggregates formed by each copolymer. This study relates nanoscale phenomena (hydrophobic and hydrophilic hydration) with the mesoscale phenomenon of micellization.


Subject(s)
Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Water/chemistry , Micelles , Molecular Dynamics Simulation , Particle Size , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...