Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
MycoKeys ; 102: 285-299, 2024.
Article in English | MEDLINE | ID: mdl-38463695

ABSTRACT

Members of the lichen-forming fungal genus Oxneriaria are known to occur in cold polar and high altitudinal environments. Two new species, Oxneriariacrittendenii and O.deosaiensis, are now described from the high altitude Deosai Plains, Pakistan, based on phenotypic, multigene phylogenetic and chemical evidence. Phenotypically, O.crittendenii is characterised by orbicular light-brown thalli 1.5-5 cm across, spot tests (K, C, KC) negative, apothecia pruinose, hymenium initially blue then dark orange in response to Lugol's solution. Oxneriariadeosaiensis is characterised by irregular areolate grey thalli 1.5-2 cm across, K test (light brown), KC test (dark brown), apothecia epruinose, hymenium initially blue then dark blue in response to Lugol's solution. Both species share the same characters of thalli with black margins and polarilocular ascospores. The closest previously reported species, O.pruinosa, differs from O.crittendenii and O.deosaiensis in having non-lobate margins, thin thalline exciple (45-80 µm thick), short asci (55-80 × 25-42 µm) and K positive (yellow) and KC negative tests and divergent DNA sequence in the ITS, LSU and mtSSU regions. The newly-described Oxneriaria species add to growing evidence of the Deosai Plains as a region of important arctic-alpine biodiversity.

2.
NPJ Sci Food ; 8(1): 3, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191473

ABSTRACT

Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway. Systematic deletion of pathway genes altered the arising spore colour, yielding white to yellow-green to red-pink-brown phenotypes, demonstrating the potential to generate new coloured strains. There was no consistent impact on mycophenolic acid production as a result of pathway interruption although levels of roquefortine C were altered in some deletants. Importantly, levels of methyl-ketones associated with blue-cheese flavour were not impacted. UV-induced colour mutants, allowed in food production, were then generated. A range of colours were obtained and certain phenotypes were successfully mapped to pathway gene mutations. Selected colour mutants were subsequently used in cheese production and generated expected new colourations with no elevated mycotoxins, offering the exciting prospect of use in future cheese manufacture.

3.
PLoS Biol ; 21(9): e3002278, 2023 09.
Article in English | MEDLINE | ID: mdl-37708139

ABSTRACT

Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.


Subject(s)
ATP-Binding Cassette Transporters , Aspergillus fumigatus , Humans , Aspergillus fumigatus/genetics , Antifungal Agents , Biological Transport , Eukaryota , Meiosis/genetics
4.
Sci Adv ; 9(29): eadh8839, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37478175

ABSTRACT

Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.


Subject(s)
Aspergillosis , Citizen Science , Humans , Aspergillus fumigatus/genetics , Drug Resistance, Fungal/genetics , Aspergillosis/drug therapy , Aspergillosis/microbiology , Antifungal Agents/pharmacology , Azoles/pharmacology
7.
Front Cell Infect Microbiol ; 12: 841138, 2022.
Article in English | MEDLINE | ID: mdl-35531335

ABSTRACT

A sexual cycle was described in 2009 for the opportunistic fungal pathogen Aspergillus fumigatus, opening up for the first time the possibility of using techniques reliant on sexual crossing for genetic analysis. The present study was undertaken to evaluate whether the technique 'bulk segregant analysis' (BSA), which involves detection of differences between pools of progeny varying in a particular trait, could be applied in conjunction with next-generation sequencing to investigate the underlying basis of monogenic traits in A. fumigatus. Resistance to the azole antifungal itraconazole was chosen as a model, with a dedicated bioinformatic pipeline developed to allow identification of SNPs that differed between the resistant progeny pool and resistant parent compared to the sensitive progeny pool and parent. A clinical isolate exhibiting monogenic resistance to itraconazole of unknown basis was crossed to a sensitive parent and F1 progeny used in BSA. In addition, the use of backcrossing and increasing the number in progeny pools was evaluated as ways to enhance the efficiency of BSA. Use of F1 pools of 40 progeny led to the identification of 123 candidate genes with SNPs distributed over several contigs when aligned to an A1163 reference genome. Successive rounds of backcrossing enhanced the ability to identify specific genes and a genomic region, with BSA of progeny (using 40 per pool) from a third backcross identifying 46 genes with SNPs, and BSA of progeny from a sixth backcross identifying 20 genes with SNPs in a single 292 kb region of the genome. The use of an increased number of 80 progeny per pool also increased the resolution of BSA, with 29 genes demonstrating SNPs between the different sensitive and resistant groupings detected using progeny from just the second backcross with the majority of variants located on the same 292 kb region. Further bioinformatic analysis of the 292 kb region identified the presence of a cyp51A gene variant resulting in a methionine to lysine (M220K) change in the CYP51A protein, which was concluded to be the causal basis of the observed resistance to itraconazole. The future use of BSA in genetic analysis of A. fumigatus is discussed.


Subject(s)
Aspergillus fumigatus , Azoles , Antifungal Agents/pharmacology , Aspergillus fumigatus/metabolism , Azoles/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Itraconazole/metabolism , Itraconazole/pharmacology , Microbial Sensitivity Tests
8.
Nat Microbiol ; 7(5): 663-674, 2022 05.
Article in English | MEDLINE | ID: mdl-35469019

ABSTRACT

Infections caused by the fungal pathogen Aspergillus fumigatus are increasingly resistant to first-line azole antifungal drugs. However, despite its clinical importance, little is known about how susceptible patients acquire infection from drug-resistant genotypes in the environment. Here, we present a population genomic analysis of 218 A. fumigatus isolates from across the UK and Ireland (comprising 153 clinical isolates from 143 patients and 65 environmental isolates). First, phylogenomic analysis shows strong genetic structuring into two clades (A and B) with little interclade recombination and the majority of environmental azole resistance found within clade A. Second, we show occurrences where azole-resistant isolates of near-identical genotypes were obtained from both environmental and clinical sources, indicating with high confidence the infection of patients with resistant isolates transmitted from the environment. Third, genome-wide scans identified selective sweeps across multiple regions indicating a polygenic basis to the trait in some genetic backgrounds. These signatures of positive selection are seen for loci containing the canonical genes encoding fungicide resistance in the ergosterol biosynthetic pathway, while other regions under selection have no defined function. Lastly, pan-genome analysis identified genes linked to azole resistance and previously unknown resistance mechanisms. Understanding the environmental drivers and genetic basis of evolving fungal drug resistance needs urgent attention, especially in light of increasing numbers of patients with severe viral respiratory tract infections who are susceptible to opportunistic fungal superinfections.


Subject(s)
Anti-Infective Agents , Aspergillus fumigatus , Aspergillus fumigatus/genetics , Azoles/pharmacology , Drug Resistance, Fungal/genetics , Humans , Metagenomics , Microbial Sensitivity Tests
9.
Appl Environ Microbiol ; 88(4): e0206121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34986003

ABSTRACT

Compost is an ecological niche for Aspergillus fumigatus due to its role as a decomposer of organic matter and its ability to survive the high temperatures associated with the composting process. Subsequently, composting facilities are associated with high levels of A. fumigatus spores that are aerosolized from compost and cause respiratory illness in workers. In the UK, gardening is an activity enjoyed by individuals of all ages, and it is likely that they are being exposed to A. fumigatus spores when handling commercial compost or compost they have produced themselves. In the present study, 246 citizen scientists collected 509 soil samples from locations in their gardens in the UK, from which were cultured 5,174 A. fumigatus isolates. Of these isolates, 736 (14%) were resistant to tebuconazole: the third most-sprayed triazole fungicide in the UK, which confers cross-resistance to the medical triazoles used to treat A. fumigatus lung infections in humans. These isolates were found to contain the common resistance mechanisms in the A. fumigatus cyp51A gene TR34/L98H or TR46/Y121F/T289A, as well as the less common resistance mechanisms TR34, TR53, TR46/Y121F/T289A/S363P/I364V/G448S, and (TR46)2/Y121F/M172I/T289A/G448S. Regression analyses found that soil samples containing compost were significantly more likely to grow tebuconazole-susceptible and tebuconazole-resistant A. fumigatus strains than those that did not and that compost samples grew significantly higher numbers of A. fumigatus than other samples. IMPORTANCE The findings presented here highlight compost as a potential health hazard to individuals with predisposing factors to A. fumigatus lung infections and as a potential health hazard to immunocompetent individuals who could be exposed to sufficiently high numbers of spores to develop infection. Furthermore, we found that 14% of A. fumigatus isolates in garden soils were resistant to an agricultural triazole, which confers cross-resistance to medical triazoles used to treat A. fumigatus lung infections. This raises the question of whether compost bags should carry additional health warnings regarding inhalation of A. fumigatus spores, whether individuals should be advised to wear facemasks while handling compost, or whether commercial producers should be responsible for sterilizing compost before shipping. The findings support increasing public awareness of the hazard posed by compost and investigating measures that can be taken to reduce the exposure risk.


Subject(s)
Aspergillus fumigatus , Citizen Science , Antifungal Agents/pharmacology , Azoles , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Gardening , Gardens , Humans , Microbial Sensitivity Tests , Soil , Triazoles/pharmacology
10.
mBio ; 12(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33402536

ABSTRACT

The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (never in sexual development). In previous studies with Aspergillus nidulans, it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the nsdC homologue in the opportunistic human pathogen A. fumigatus was investigated. NsdC was again found to be essential for sexual development, with deletion of the nsdC gene in both MAT1-1 and MAT1-2 mating partners of a cross leading to complete loss of fertility. However, a functional copy of nsdC in one mating partner was sufficient to allow sexual reproduction. Deletion of nsdC also led to decreased vegetative growth and allowed conidiation in liquid cultures, again consistent with previous findings. However, NsdC in A. fumigatus was shown to have additional biological functions including response to calcium stress, correct organization of cell wall structure, and response to the cell wall stressors. Furthermore, virulence and host immune recognition were affected. Gene expression studies involving chromatin immunoprecipitation (ChIP) of RNA polymerase II (PolII) coupled to next-generation sequencing (Seq) revealed that deletion of nsdC resulted in changes in expression of over 620 genes under basal growth conditions. This demonstrated that this transcription factor mediates the activity of a wide variety of signaling and metabolic pathways and indicates that despite the naming of the gene, the promotion of sexual reproduction is just one among multiple roles of NsdC.IMPORTANCEAspergillus fumigatus is an opportunistic human fungal pathogen and the main causal agent of invasive aspergillosis, a life-threatening infection especially in immunocompromised patients. A. fumigatus can undergo both asexual and sexual reproductive cycles, and the regulation of both cycles involves several genes and pathways. Here, we have characterized one of these genetic determinants, the NsdC transcription factor, which was initially identified in a screen of transcription factor null mutants showing sensitivity when exposed to high concentrations of calcium. In addition to its known essential roles in sexual reproduction and control of growth rate and asexual reproduction, we have shown in the present study that A. fumigatus NsdC transcription factor has additional previously unrecognized biological functions including calcium tolerance, cell wall stress response, and correct cell wall organization and functions in virulence and host immune recognition. Our results indicate that NsdC can play novel additional biological functions not directly related to its role played during sexual and asexual processes.


Subject(s)
Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/pathogenicity , Cell Wall , Disease Models, Animal , Female , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation , Phenotype , Reproduction, Asexual , Signal Transduction , Transcriptome , Virulence/genetics , Virulence Factors/genetics
11.
Phytopathology ; 111(3): 582-592, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32748733

ABSTRACT

Eyespot, caused by the related fungal pathogens Oculimacula acuformis and O. yallundae, is an important cereal stem-base disease in temperate parts of the world. Both species are dispersed mainly by splash-dispersed conidia but are also known to undergo sexual reproduction, yielding apothecia containing ascospores. Field diagnosis of eyespot can be challenging, with other pathogens causing similar symptoms, which complicates eyespot management strategies. Differences between O. acuformis and O. yallundae (e.g., host pathogenicity and fungicide sensitivity) require that both be targeted for effective disease management. Here, we develop and apply two molecular methods for species-specific and mating-type (MAT1-1 or MAT1-2) discrimination of O. acuformis and O. yallundae isolates. First, a multiplex PCR-based diagnostic assay targeting the MAT idiomorph region was developed, allowing simultaneous determination of both species and mating type. This multiplex PCR assay was successfully applied to type a global collection of isolates. Second, the development of loop-mediated isothermal amplification (LAMP) assays targeting ß-tubulin sequences, which allow fast (<9 min) species-specific discrimination of global O. acuformis and O. yallundae isolates, is described. The LAMP assay can detect very small amounts of target DNA (1 pg) and was successfully applied in planta. In addition, mating-type-specific LAMP assays were also developed for rapid (<12 min) genotyping of O. acuformis and O. yallundae isolates. Finally, the multiplex PCR-based diagnostic was applied, in conjunction with spore trapping in field experiments, to provide evidence of the wind dispersal of ascospores from a diseased crop. The results indicate an important role of the sexual cycle in the dispersal of eyespot.


Subject(s)
Edible Grain , Plant Diseases , Ascomycota , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Reproduction , Spores, Fungal
12.
J Fungi (Basel) ; 6(4)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143051

ABSTRACT

A sexual cycle in Aspergillus fumigatus was first described in 2009 with isolates from Dublin, Ireland. However, the extent to which worldwide isolates can undergo sexual reproduction has remained unclear. In this study a global collection of 131 isolates was established with a near 1:1 ratio of mating types. All isolates were crossed to MAT1-1 or MAT1-2 Irish strains, and a subset of isolates from different continents were crossed together. Ninety seven percent of isolates were found to produce cleistothecia with at least one mating partner, showing that sexual fertility is not limited to the Irish population but is a characteristic of global A. fumigatus. However, large variation was seen in numbers of cleistothecia produced per cross, suggesting differences in the possibility for genetic exchange between strains in nature. The majority of crosses produced ascospores with >50% germination rates, but with wide variation evident. A high temperature heat shock was required to induce ascospore germination. Finally, a new set of highly fertile MAT1-1 and MAT1-2 supermater strains were identified and pyrimidine auxotrophs generated for community use. Results provide insights into the potential for the A. fumigatus sexual cycle to generate genetic variation and allow gene flow of medically important traits.

13.
Fungal Genet Biol ; 139: 103377, 2020 06.
Article in English | MEDLINE | ID: mdl-32251730

ABSTRACT

Certain Aspergillus species such as Aspergillus flavus and A. parasiticus are well known for the formation of sclerotia. These developmental structures are thought to act as survival structures during adverse environmental conditions but are also a prerequisite for sexual reproduction. We previously described an A. niger mutant (scl-2) which formed sclerotium-like structures, suggesting a possible first stage of sexual development in this species. Several lines of evidence presented in this study support the previous conclusion that the sclerotium-like structures of scl-2 are indeed sclerotia. These included the observations that: (i) safranin staining of the sclerotia-like structures produced by the scl-2 mutant showed the typical cellular structure of a sclerotium; (ii) metabolite analysis revealed specific production of indoloterpenes, which have previously been connected to sclerotium formation; (iii) formation of the sclerotium-like structures is dependent on a functional NADPH complex, as shown for other fungi forming sclerotia. The mutation in scl-2 responsible for sclerotium formation was identified using parasexual crossing and bulk segregant analysis followed by high throughput sequencing and subsequent complementation analysis. The scl-2 strain contains a mutation that introduces a stop codon in the putative DNA binding domain of a previously uncharacterized Zn(II)2Cys6 type transcription factor (An08g07710). Targeted deletion of this transcription factor (sclB) confirmed its role as a repressor of sclerotial formation and in the promotion of asexual reproduction in A. niger. Finally, a genome-wide transcriptomic comparison of RNA extracted from sclerotia versus mycelia revealed major differences in gene expression. Induction of genes related to indoloterpene synthesis was confirmed and also let to the identification of a gene cluster essential for the production of aurasperones during sclerotium formation. Expression analysis of genes encoding other secondary metabolites, cell wall related genes, transcription factors, and genes related to reproductive processes identified many interesting candidate genes to further understand the regulation and biosynthesis of sclerotia in A. niger. The newly identified SclB transcription factor acts as a repressor of sclerotium formation and manipulation of sclB may represent a first prerequisite step towards engineering A. niger strains capable of sexual reproduction. This will provide exciting opportunities for further strain improvement in relation to protein or metabolite production in A. niger.


Subject(s)
Aspergillus niger/genetics , Fungal Proteins/genetics , Mycelium/genetics , Transcription Factors/genetics , Aspergillus niger/pathogenicity , Mutation/genetics , Mycelium/growth & development , Protein Domains/genetics , Reproduction, Asexual/genetics , Spores, Fungal/genetics , Zinc/chemistry
14.
Curr Biol ; 29(18): R866-R868, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31550469

ABSTRACT

Fungi can fuse with other individuals to enable cooperative growth, although this process is restricted by certain self/non-self recognition systems. A novel layer of compatibility has now been discovered, acting at the stage of germling cell wall fusion, showing the remarkable complexity of allorecognition in fungi.


Subject(s)
Cell Communication , Fungi
15.
Curr Protoc Microbiol ; 54(1): e87, 2019 09.
Article in English | MEDLINE | ID: mdl-31518066

ABSTRACT

Aspergillus fumigatus is an opportunistic human fungal pathogen, capable of causing invasive aspergillosis in patients with compromised immune systems. The fungus was long considered a purely asexual organism. However, a sexual cycle was reported in 2009, with methods described to induce mating under laboratory conditions. The presence of a sexual cycle now offers a valuable tool for classical genetic analysis of the fungus, such as allowing determination of whether traits of interest are mono- or poly-genic in nature. For example, the sexual cycle is currently being exploited to determine the genetic basis of traits of medical importance such as resistance to azole antifungals and virulence, and to characterize the genes involved. The sexual cycle can also be used to assess the possibility of gene flow between isolates. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. This unit describes protocols for culturing of A. fumigatus and for inducing sexual reproduction between compatible MAT1-1 and MAT1-2 isolates of the species. The unit also provides working methods for harvesting sexual structures, isolating single-spore progeny and confirming whether sexual recombination has occurred. © The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Aspergillus fumigatus/growth & development , Aspergillus fumigatus/physiology , Mycology/methods , Polymerase Chain Reaction/methods , Preservation, Biological/methods , Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Culture Media/chemistry , Culture Media/metabolism , Genes, Mating Type, Fungal , Humans , Mycology/instrumentation , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/physiology
16.
Mycoses ; 62(9): 812-817, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31211900

ABSTRACT

BACKGROUND: Loop-mediated isothermal amplification (LAMP) assays, which operate at a single temperature and require no postreaction processing, have been described for rapid species-specific detection of numerous fungi. The technology has much less commonly been applied to identification of other key genetic traits such as fungicide resistance, and has not yet been applied to mating-type determination in any fungus. OBJECTIVES: To develop first LAMP assays for mating-type identification in a fungus, in this instance with the saprophytic mould and human opportunistic pathogen Aspergillus fumigatus, a heterothallic ascomycete requiring isolates of opposite mating type (MAT1-1, MAT1-2) for sexual reproduction. METHODS: New LAMP primer sets, targeted to MAT gene sequences, were screened against 34 A fumigatus isolates (of known mating type) from diverse clinical, environmental and geographic sources to establish whether they could distinguish MAT1-1 or MAT1-2 genotypes. RESULTS AND CONCLUSIONS: The new assays, operating at a single temperature of 65°C, correctly identified the mating type of A fumigatus isolates in <20 minutes, and thus have numerous research and practical applications. Similar MAT LAMP assays could now be developed for other fungi of agricultural, environmental, industrial and/or medical importance.


Subject(s)
Aspergillus fumigatus/genetics , Genes, Mating Type, Fungal , Nucleic Acid Amplification Techniques , Sequence Analysis, DNA , Temperature
17.
Fungal Biol ; 123(7): 497-506, 2019 07.
Article in English | MEDLINE | ID: mdl-31196519

ABSTRACT

Fungi and arthropods represent some of the most diverse organisms on our planet, yet the ecological relationships between them remain largely unknown. In animals, fungal growth on body surfaces is often hazardous and is known to cause mortality. In contrast, here we report the presence of an apparently non-harmful mycobiome on the cuticle of whip spiders (Arachnida: Amblypygi). The associations are not species-specific and involve a diversity of fungal species, including cosmopolitan and local decomposers as well as entomopathogens. We discuss the ecology of the detected fungal species and hypothesize that the thick epicuticular secretion coat of whip spiders (the cerotegument) promotes fungal growth. It is possible that this relationship is beneficial towards the host if it leads to parasite control or chemical camouflage. Our findings, which are the first from this arthropod lineage, indicate that non-pathogenic interactions between arthropods and fungi may be much more widespread than predicted and call for more studies in this area.


Subject(s)
Arachnida/microbiology , Fungi/growth & development , Host Microbial Interactions/physiology , Animal Shells/microbiology , Animals , Arachnida/classification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Mycobiome
18.
Fungal Genet Biol ; 108: 1-12, 2017 11.
Article in English | MEDLINE | ID: mdl-28889020

ABSTRACT

Sexual propagation accompanied by recombination and the formation of spore-containing fruiting bodies is a cornerstone of fungal genetics and biology. In the human pathogen Aspergillus fumigatus sexual identity has previously been shown to be determined by MAT1-1-1 or MAT1-2-1 genes which act as transcriptional regulators and are present within idiomorphs found at the MAT locus. We here report the identification and first characterization of a further novel gene, termed MAT1-2-4, that is present in the MAT1-2 idiomorph of A. fumigatus. A mating-type swapping strategy was used to achieve an unbiased deletion of the MAT1-2-4 gene with no impact on MAT1-2-1 gene expression. Phenotypical characterization of the resulting strain revealed an inability to mate with the compatible MAT1-1 progenitor, demonstrating that the MAT1-2-4 gene product is a genuine mating-type factor required for correct sexual development. A GPI-anchored protein of unknown function was identified as interaction partner. However, no functional role in the mating process or ascosporogenesis could be demonstrated by deletion analysis for this latter protein, although a role in heterokaryon formation is suggested. Bioinformatic analysis also demonstrated the presence of MAT1-2-4 homologues in some, but not all, other Aspergillus species and the evolutionary origins and implications of the MAT1-2-4 gene are discussed.


Subject(s)
Aspergillus fumigatus/genetics , Genes, Mating Type, Fungal , Plasmids
19.
Microbiol Spectr ; 5(3)2017 06.
Article in English | MEDLINE | ID: mdl-28597816

ABSTRACT

Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.


Subject(s)
Cell Cycle/genetics , Fungi/genetics , Genes, Mating Type, Fungal/genetics , Sex , Evolution, Molecular , Fungi/classification , Genes, Fungal/genetics , Genes, Mating Type, Fungal/physiology , Genetics, Population , Genome, Fungal , Humans , Recombination, Genetic , Reproduction , Reproduction, Asexual , Transcription Factors/genetics
20.
J Clin Microbiol ; 53(4): 1056-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25297326

ABSTRACT

Recent changes in the Fungal Code of Nomenclature and developments in molecular phylogeny are about to lead to dramatic changes in the naming of medically important molds and yeasts. In this article, we present a widely supported and simple proposal to prevent unnecessary nomenclatural instability.


Subject(s)
Mycoses/microbiology , Fungi/classification , Humans , Infectious Disease Medicine , Mycology , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...