Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 15(1): 5, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29304825

ABSTRACT

BACKGROUND: Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS: To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS: We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION: Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.


Subject(s)
Antiviral Agents/pharmacology , Cytoplasm/metabolism , Endoribonucleases/pharmacology , Gene Expression Regulation, Viral/drug effects , Influenza A virus/drug effects , RNA, Viral/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Cell Survival/drug effects , Dogs , Endoribonucleases/isolation & purification , Endoribonucleases/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Viral Proteins/genetics
2.
FEBS Lett ; 591(24): 4039-4048, 2017 12.
Article in English | MEDLINE | ID: mdl-29159940

ABSTRACT

The archaeal exosome, a protein complex responsible for phosphorolytic degradation and tailing of RNA, has an RNA-binding platform containing Rrp4, Csl4, and DnaG. Aiming to detect novel interaction partners of the exosome, we copurified Nop5, which is a part of an rRNA methylating ribonucleoprotein complex, with the exosome of Sulfolobus solfataricus grown to a late stationary phase. We demonstrated the capability of Nop5 to bind to the exosome with a homotrimeric Rrp4-cap and to increase the proportion of polyadenylated RNAin vitro, suggesting that Nop5 is a dual-function protein. Since tailing of RNA probably serves to enhance RNA degradation, association of Nop5 with the archaeal exosome in the stationary phase may enhance tailing and degradation of RNA as survival strategy.


Subject(s)
Archaeal Proteins/metabolism , Exosomes/metabolism , RNA, Archaeal/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Polyadenylation , Protein Binding , RNA Stability , Substrate Specificity , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
3.
ChemMedChem ; 12(12): 972-985, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28505394

ABSTRACT

Metallo-ß-lactamases (MBLs) cause resistance of Gram-negative bacteria to ß-lactam antibiotics and are of serious concern, because they can inactivate the last-resort carbapenems and because MBL inhibitors of clinical value are still lacking. We previously identified the original binding mode of 4-amino-2,4-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione (compound IIIA) within the dizinc active site of the L1 MBL. Herein we present the crystallographic structure of a complex of L1 with the corresponding non-amino compound IIIB (1,2-dihydro-5-(2-methylphenyl)-3H-1,2,4-triazole-3-thione). Unexpectedly, the binding mode of IIIB was similar but reverse to that of IIIA. The 3 D structures suggested that the triazole-thione scaffold was suitable to bind to the catalytic site of dizinc metalloenzymes. On the basis of these results, we synthesized 54 analogues of IIIA or IIIB. Nineteen showed IC50 values in the micromolar range toward at least one of five representative MBLs (i.e., L1, VIM-4, VIM-2, NDM-1, and IMP-1). Five of these exhibited a significant inhibition of at least four enzymes, including NDM-1, VIM-2, and IMP-1. Active compounds mainly featured either halogen or bulky bicyclic aryl substituents. Finally, some compounds were also tested on several microbial dinuclear zinc-dependent hydrolases belonging to the MBL-fold superfamily (i.e., endonucleases and glyoxalase II) to explore their activity toward structurally similar but functionally distinct enzymes. Whereas the bacterial tRNases were not inhibited, the best IC50 values toward plasmodial glyoxalase II were in the 10 µm range.


Subject(s)
Thiones/pharmacology , Triazoles/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Aeromonas hydrophila/enzymology , Dose-Response Relationship, Drug , Molecular Structure , Stenotrophomonas maltophilia/enzymology , Structure-Activity Relationship , Thiones/chemical synthesis , Thiones/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/chemistry
4.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28250123

ABSTRACT

The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses, identifying highly conserved arginine residues 35 and 46 within the NS1 N terminus as being most critical not only for binding to and blocking activation of PKR but also for efficient virus propagation. Biochemical and Förster resonance energy transfer (FRET)-based interaction studies showed that mutation of R35 or R46 allowed formation of NS1 dimers but eliminated any detectable binding to PKR as well as to double-stranded RNA (dsRNA). Using in vitro and in vivo approaches to phenotypic restoration, we demonstrated the essential role of the NS1 N terminus for blocking PKR. The strong attenuation conferred by NS1 mutation R35A or R46A was substantially alleviated by stable knockdown of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR+/+ mice, but replicated to high titers in lungs of PKR-/- mice and caused lethal infections. These data not only establish the NS1 N terminus as highly critical for neutralization of PKR's antiviral activity but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle.IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase (PKR) by means of its nonstructural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identified arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR-/- mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence.


Subject(s)
Amino Acids/chemistry , Influenza A virus/chemistry , Influenza A virus/pathogenicity , Viral Nonstructural Proteins/chemistry , eIF-2 Kinase/antagonists & inhibitors , Animals , Cell Line , Enzyme Activation , Host-Pathogen Interactions , Humans , Immunity, Innate , Influenza A virus/genetics , Lung/virology , Mice , Mutation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virulence , Virus Replication , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
5.
J Virol ; 89(11): 6009-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810542

ABSTRACT

UNLABELLED: Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE: In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral replication cycle. The report provides an intriguing example of how influenza virus exploits cellular structures and regulatory pathways, including intracellular transport mechanisms, to complete its replication cycle and maximize the production of infectious virus progeny.


Subject(s)
Active Transport, Cell Nucleus , Caspases/metabolism , Influenza A virus/physiology , Nuclear Pore/metabolism , Ribonucleoproteins/metabolism , Virus Replication , Animals , Cell Line , Humans , Microscopy, Electron, Transmission , Nuclear Pore Complex Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...