Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 55(9): 5868-5877, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33878866

ABSTRACT

Aquatic-to-terrestrial subsidies have the potential to provide riparian consumers with benefits in terms of physiologically important organic compounds like omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs). However, they also have a "dark side" in the form of exposure to toxicants such as mercury. Human land use intensity may also determine whether subsidies provide benefits or come at a cost for riparian predators. We sampled insects as well as Eastern Phoebe (Sayornis phoebe) chicks in 2015-2016 within the southern Finger Lakes region to understand how food quality, in terms of n-3 LCPUFAs and methylmercury (MeHg), of emergent freshwater insects compared with that of terrestrial insects and how land use affected the quality of prey, predator diet composition, and MeHg exposure. Across the landscape, freshwater insects had a significantly higher percentage of the n-3 LCPUFA eicosapentaenoic acid (EPA) compared to terrestrial insects and contained significantly more MeHg than terrestrial insects did. In spite of differences in MeHg concentrations between aquatic and terrestrial insects, chick MeHg concentrations were not related to diet composition. Instead, chick MeHg concentrations increased with several metrics of human land use intensity, including percent agriculture. Our findings suggest that freshwater subsidies provide predators with both risks and benefits, but that predator MeHg exposure can vary with human land use intensity.


Subject(s)
Methylmercury Compounds , Agriculture , Animals , Fatty Acids , Food Chain , Humans , Insecta
2.
Ecotoxicology ; 29(10): 1802-1814, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31729602

ABSTRACT

We examined how variation in MeHg concentrations through time is reflected in birds, a taxon commonly used as a biological indicator of ecosystem health. Using museum specimens collected from 1880 to 2016, we measured feather MeHg concentrations in six species of birds that breed in New York State and have distinct dietary and habitat preferences. We predicted that MeHg concentrations in feathers would mirror Hg emission patterns in New York State and increase through time until 1980 then decrease thereafter in response to increased regulation of anthropogenic Hg emissions. We found that MeHg concentrations increased with δ15N, and that MeHg feather concentrations for some individuals from four of the six species examined exceeded concentrations known to cause negative sublethal effects in birds. In contrast to our prediction, MeHg concentrations in feathers did not parallel global or local Hg emissions through time and varied by species, even after controlling for possible changes in diet and habitat. MeHg concentrations varied substantially within species and individual specimens, suggesting that high within-individual variation in feather MeHg concentrations caused by spatiotemporal variation in molt, environmental Hg exposure, or mobility decoupling Hg uptake from breeding sites, may obscure trends in MeHg through time. Our study provides a unique assessment of feather MeHg in six species not typically analyzed using this retrospective approach.


Subject(s)
Birds/metabolism , Environmental Monitoring , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Animals , Diet , Ecosystem , Feathers , Methylmercury Compounds , Museums , New York
3.
PLoS One ; 10(12): e0144949, 2015.
Article in English | MEDLINE | ID: mdl-26671001

ABSTRACT

Divergence in song between allopatric populations can contribute to premating reproductive isolation in territorial birds. Song divergence is typically measured by quantifying divergence in vocal traits using audio recordings, but field playback experiments provide a more direct way to behaviorally measure song divergence between allopatric populations. The White-breasted Wood-Wren (Henicorhina leucosticta; hereafter "WBWW") is an abundant Neotropical species with four mitochondrial clades (in Central America, the Darién, the Chocó and the Amazon) that are deeply divergent (~5-16% sequence divergence). We assessed the possibility that the WBWW as currently defined may represent multiple biological species by conducting both statistical analysis of vocal characters and field playback experiments within three clades (Central America, Chocó and Amazon). Our analysis of vocal traits revealed that Central American songs overlapped in acoustic space with Chocó songs, indicating vocal similarity between these two populations, but that Central American songs were largely divergent from Amazonian songs. Playback experiments in the Caribbean lowlands of Costa Rica revealed that Central American WBWWs typically responded aggressively to songs from the Chocó population but did not respond to playback of songs from the Amazonian population, echoing the results of the vocal trait analysis. This marked difference in behavioral response demonstrates that the songs of Central American and Amazonian WBWWs (but not Central American and Chocó WBWWs) have diverged sufficiently that Central American WBWWs no longer recognize song from Amazonian WBWWs as a signal to elicit territorial defense. This suggests that significant premating reproductive isolation has evolved between these two populations, at least from the perspective of the Central American population, and is consistent with the possibility that Central American and Amazonian populations represent distinct biological species. We conclude by advocating for the further use of field playback experiments to assess premating reproductive isolation (and species limits) between allopatric songbird populations, a situation where behavioral systematics can answer questions that phylogenetic systematics cannot.


Subject(s)
Genetic Speciation , Songbirds/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Costa Rica , Geography , Principal Component Analysis , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL