Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Sci Rep ; 14(1): 8730, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627588

ABSTRACT

We previously showed that MYC promoted Burkitt lymphoma (BL) growth by inhibiting the tumor suppressor miR-150, resulting in release of miR-150 targets MYB and ZDHHC11. The ZDHHC11 gene encodes three different transcripts including a mRNA (pcZDHHC11), a linear long non-coding RNA (lncZDHHC11) and a circular RNA (circZDHHC11). All transcripts contain the same region with 18 miR-150 binding sites. Here we studied the relevance of circZDHHC11, including this miR-150 binding site region, for growth of BL cells. CircZDHHC11 was mainly present in the cytoplasmic fraction in BL cells and its localization was not altered upon miR-150 overexpression. Knockdown of circZDHHC11 caused a strong inhibition of BL growth without affecting the expression levels of MYC, MYB, miR-150 and other genes. Overexpression of circZDHHC11 neither affected cell growth, nor rescued the phenotype induced by miR-150 overexpression. Genomic deletion of the miR-150 binding site region did not affect growth, nor did it change the effect of circZDHHC11 knockdown. This indicated that the miR-150 binding site region is dispensable for the growth promoting role of circZDHHC11. To conclude, our results show that circZDHHC11 is a crucial factor supporting BL cell growth independent of its ability to sponge miR-150.


Subject(s)
Burkitt Lymphoma , MicroRNAs , Humans , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Circular
2.
DNA Repair (Amst) ; 135: 103648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382170

ABSTRACT

DNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors. Recent studies have suggested that long non-coding RNAs (lncRNAs) are involved in DDR. Here, we aimed to identify lncRNAs induced upon DNA damage in an ATM-dependent manner. DNA damage was induced by ionizing radiation (IR) in immortalized lymphoblastoid cell lines derived from 4 patients with ataxia-telangiectasia (AT) and 4 healthy donors. RNA-seq revealed 10 lncRNAs significantly induced 1 h after IR in healthy donors, whereas none in AT patients. 149 lncRNAs were induced 8 h after IR in the control group, while only three in AT patients. Among IR-induced mRNAs, we found several genes with well-known functions in DDR. Gene Set Enrichment Analysis and Gene Ontology revealed delayed induction of key DDR pathways in AT patients compared to controls. The induction and dynamics of selected 9 lncRNAs were confirmed by RT-qPCR. Moreover, using a specific ATM inhibitor we proved that the induction of those lncRNAs is dependent on ATM. Some of the detected lncRNA genes are localized next to protein-coding genes involved in DDR. We observed that induction of lncRNAs after IR preceded changes in expression of adjacent genes. This indicates that IR-induced lncRNAs may regulate the transcription of nearby genes. Subcellular fractionation into chromatin, nuclear, and cytoplasmic fractions revealed that the majority of studied lncRNAs are localized in chromatin. In summary, our study revealed several lncRNAs induced by IR in an ATM-dependent manner. Their genomic co-localization and co-expression with genes involved in DDR suggest that those lncRNAs may be important players in cellular response to DNA damage.


Subject(s)
Ataxia Telangiectasia , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , DNA Damage , Chromatin , Cell Line , Ataxia Telangiectasia Mutated Proteins
3.
J Appl Genet ; 65(1): 95-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917375

ABSTRACT

Burkitt lymphoma (BL) is a highly aggressive lymphoma that mainly affects children and young adults. Chemotherapy is effective in young BL patients but the outcome in adults is less satisfactory. Therefore, there is a need to enhance the cytotoxic effect of drugs used in BL treatment. Glutathione (GSH) is an important antioxidant involved in processes such as regulation of oxidative stress and drug detoxification. Elevated GSH levels have been observed in many cancers and were associated with chemoresistance. We previously identified GCLC, encoding an enzyme involved in GSH biosynthesis, as an essential gene in BL. We now confirm that knockout of GCLC decreases viability of BL cells and that the GCLC protein is overexpressed in BL tissues. Moreover, we demonstrate that buthionine sulfoximine (BSO), a known inhibitor of GCLC, decreases growth of BL cells but does not affect control B cells. Furthermore, we show for the first time that BSO enhances the cytotoxicity of compounds commonly used in BL treatment, doxorubicin, and cyclophosphamide. Given the fact that BSO itself was not toxic to control cells and well-tolerated in clinical trials, combination of chemotherapy with BSO may allow reduction of the doses of cytotoxic drugs required to obtain effective responses in BL patients.


Subject(s)
Burkitt Lymphoma , Glutamate-Cysteine Ligase , Child , Humans , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Catalytic Domain , Cyclophosphamide/pharmacology , Doxorubicin/pharmacology , Glutathione/metabolism
4.
Mol Oncol ; 17(11): 2295-2313, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37519063

ABSTRACT

The transcription factor MYC is a proto-oncogene with a well-documented essential role in the pathogenesis and maintenance of several types of cancer. MYC binds to specific E-box sequences in the genome to regulate gene expression in a cell-type- and developmental-stage-specific manner. To date, a combined analysis of essential MYC-bound E-boxes and their downstream target genes important for growth of different types of cancer is missing. In this study, we designed a CRISPR/Cas9 library to destroy E-box sequences in a genome-wide fashion. In parallel, we used the Brunello library to knock out protein-coding genes. We performed high-throughput screens with these libraries in four MYC-dependent cancer cell lines-K562, ST486, HepG2, and MCF7-which revealed several essential E-boxes and genes. Among them, we pinpointed crucial common and cell-type-specific MYC-regulated genes involved in pathways associated with cancer development. Extensive validation of our approach confirmed that E-box disruption affects MYC binding, target-gene expression, and cell proliferation in vitro as well as tumor growth in vivo. Our unique, well-validated tool opens new possibilities to gain novel insights into MYC-dependent vulnerabilities in cancer cells.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CRISPR-Cas Systems/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line , Transcription Factors/metabolism , Gene Expression Regulation , Neoplasms/genetics
5.
Nucleic Acids Res ; 51(W1): W577-W586, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37158253

ABSTRACT

Eukaryotic genomes contain several types of recurrent sequence motifs, e.g. transcription factor motifs, miRNA binding sites, repetitive elements. CRISPR/Cas9 can facilitate identification and study of crucial motifs. We present transCRISPR, the first online tool dedicated to search for sequence motifs in the user-provided genomic regions and design optimal sgRNAs targeting them. Users can obtain sgRNAs for chosen motifs, for up to tens of thousands of target regions in 30 genomes, either for the Cas9 or dCas9 system. TransCRISPR provides user-friendly tables and visualizations, summarizing features of identified motifs and designed sgRNAs such as genomic localization, quality scores, closest transcription start sites and others. Experimental validation of sgRNAs for MYC binding sites designed with transCRISPR confirmed efficient disruption of the targeted motifs and effect on expression of MYC-regulated genes. TransCRISPR is available from https://transcrispr.igcz.poznan.pl/transcrispr/.


Subject(s)
CRISPR-Cas Systems , Genomics , Binding Sites/genetics , CRISPR-Cas Systems/genetics , Genome , Genomics/instrumentation , Genomics/methods , RNA, Guide, CRISPR-Cas Systems , Internet , Molecular Conformation
6.
J Pers Med ; 12(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36294833

ABSTRACT

Long non-coding RNAs have proven to be important molecules in carcinogenesis. Due to little knowledge about them, the molecular mechanisms of tumorigenesis are still being explored. The aim of this work was to study the effect of ionizing radiation on the expression of lncRNAs in head and neck squamous cell carcinoma (HNSCC) in patients responding and non-responding to radiotherapy. The experimental model was created using a group of patients with response (RG, n = 75) and no response (NRG, n = 75) to radiotherapy based on the cancer genome atlas (TCGA) data. Using the in silico model, statistically significant lncRNAs were defined and further validated on six HNSCC cell lines irradiated at three different doses. Based on the TCGA model, C10orf55, C3orf35, C5orf38, CASC2, MEG3, MYCNOS, SFTA1P, SNHG3, and TMEM105, with the altered expression between the RG and NRG were observed. Analysis of pathways and immune profile indicated that these lncRNAs were associated with changes in processes, such as epithelial-to-mesenchymal transition, regulation of spindle division, and the p53 pathway, and differences in immune cells score and lymphocyte infiltration signature score. However, only C10orf55, CASC2, and SFTA1P presented statistically altered expression after irradiation in the in vitro model. In conclusion, the expression of lncRNAs is affected by ionization radiation in HNSCC, and these lncRNAs are associated with pathways, which are important for radiation response and immune response. Potentially presented lncRNAs could be used as biomarkers for personalized radiotherapy in the future. However, these results need to be verified based on an in vitro experimental model to show a direct net of interactions.

7.
Hum Mol Genet ; 31(24): 4193-4206, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35866590

ABSTRACT

Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation/genetics , Cholesterol , Membrane Proteins/genetics
8.
Genes (Basel) ; 13(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35205272

ABSTRACT

We previously described involvement of the MYC/miR-150/MYB/ZDHHC11 network in the growth of Burkitt lymphoma (BL) cells. Here we studied the relevance of this network in the two other B-cell lymphomas: Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL). Expression levels of the network components were assessed at the RNA and protein level. The effect of modulating levels of the network components on cell growth was determined through GFP competition assay. AGO2-RNA immunoprecipitation was performed to validate targeting by miR-150. Expression levels of MYC, MYB and ZDHHC11 were increased, while miR-150 levels were decreased similar to the pattern observed in BL. The knockdown of MYC, MYB and ZDHHC11 decreased the growth of HL and DLBCL cells. In contrast, overexpression of miR-150 did not induce clear phenotypes in HL, and limited the effects in DLBCL. This could not be explained by the differences in overexpression levels. Furthermore, we showed that in HL, ZDHHC11 and MYB are efficiently targeted by miR-150. To conclude, MYC, MYB and ZDHHC11 are critical for the growth of HL and DLBCL cells consistent with the role observed in BL cells, while low endogenous miR-150 levels appeared to be less critical for the growth of HL and DLBCL cells despite the effective targeting of ZDHHC11 and MYB.


Subject(s)
Burkitt Lymphoma , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Cell Proliferation , Hodgkin Disease/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , MicroRNAs/genetics
9.
Eur J Pharmacol ; 910: 174505, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34534532

ABSTRACT

B-cell non-Hodgkin lymphoma (NHL) is among the ten most common malignancies. Survival rates range from very poor to over 90% and highly depend on the stage and subtype. Characteristic features of NHL are recurrent translocations juxtaposing an oncogene (e.g. MYC, BCL2) to the enhancers in the immunoglobulin heavy chain (IGH) locus. Survival and proliferation of many B-cell lymphomas depend on the expression of the translocated oncogene. Thus, targeting IGH enhancers as an anti-lymphoma treatment seems a promising strategy. Recently, a small molecule - 7-[[(4-methyl-2-pyridinyl)amino](2-pyridinyl)methyl]-8-quinolinol (compound 30666) was identified to decrease activity of the Eµ enhancer and reduce the expression of translocated oncogenes in multiple myeloma and some NHL cell lines (Dolloff, 2019). Here, we aimed to test the effect of compound 30666 in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) and shed light on its mechanism of action. We report that both IGH-translocation positive NHL cells as well as IGH-translocation negative B cells and non-B cell controls treated with compound 30666 exhibited consistent growth inhibition. A statistically significant increase in cell percentage in sub-G1 phase of cell cycle was observed, suggesting induction of apoptosis. Compound 30666 downregulated MYC levels in BL cell lines and altered IGH enhancer RNA expression. Moreover, a global decrease of H3K27ac and an increase of H3K4me1 was observed upon 30666 treatment, which suggests switching enhancers to a poised or primed state. Altogether, our findings indicate that 30666 inhibitor affects enhancer activity but might not be as specific for IGH enhancers as previously reported.


Subject(s)
Burkitt Lymphoma/drug therapy , Enhancer Elements, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hydroxyquinolines/pharmacology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Pyridines/pharmacology , Translocation, Genetic/drug effects , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Drug Screening Assays, Antitumor , Histone Code/drug effects , Humans , Hydroxyquinolines/therapeutic use , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Pyridines/therapeutic use
10.
Arch Med Sci ; 17(5): 1158-1163, 2021.
Article in English | MEDLINE | ID: mdl-34522244

ABSTRACT

INTRODUCTION: The inactivation of both alleles of the ATM gene leads to ataxia-telangiectasia syndrome, whereas carriers of monoallelic mutations in the ATM gene are associated with increased risk of different types of cancer. Three substitutions in the ATM gene (c.6095G>A, c.7630-2A>C, c.5932G>T) are the most common mutations causing ataxia-telangiectasia among Polish patients. The aim of this study was to determine whether these ATM mutations are associated with increased risk of tobacco-related cancers. MATERIAL AND METHODS: 783 Polish patients with tobacco-related cancers were included in the study (468 with lung cancer, 153 with a single laryngeal cancer, 86 with multiple primary tumors localized in the larynx and 76 multiple primary tumors localized in the head or neck). The control group consisted of 464 healthy subjects from the Polish population. Three ATM mutations - c.5932G>T, c.6095G>A, c.7630-2A>C - were tested among selected patients. Molecular analyses were performed using high resolution melting analysis and restriction fragment length polymorphism. RESULTS: In the present study, we detected only one mutation, c.7630-2A>C, and no carriers of c.5932G>T, c.6095G>A mutations in the ATM gene among Polish patients with tobacco-related cancers. A patient with c.7630-2A>C mutation was diagnosed with lung adenocarcinoma, the most common type of lung cancer. One carrier of c.6095G>A mutation was found in the control group. CONCLUSIONS: The results indicate that the studied ATM variants do not seem to be associated with tobacco-related cancers in Poland.

11.
Cancers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210001

ABSTRACT

B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.

12.
Cancers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201504

ABSTRACT

A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.

13.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919074

ABSTRACT

Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/secondary , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia/physiopathology , Lung Neoplasms/pathology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle , Cell Movement , Cell Proliferation , GTPase-Activating Proteins/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness , Tumor Cells, Cultured
14.
Cancers (Basel) ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261009

ABSTRACT

MicroRNAs (miRNAs) are small RNA molecules with important gene regulatory roles in normal and pathophysiological cellular processes. Burkitt lymphoma (BL) is an MYC-driven lymphoma of germinal center B (GC-B) cell origin. To gain further knowledge on the role of miRNAs in the pathogenesis of BL, we performed small RNA sequencing in BL cell lines and normal GC-B cells. This revealed 26 miRNAs with significantly different expression levels. For five miRNAs, the differential expression pattern was confirmed in primary BL tissues compared to GC-B cells. MiR-378a-3p was upregulated in BL, and its inhibition reduced the growth of multiple BL cell lines. RNA immunoprecipitation of Argonaute 2 followed by microarray analysis (Ago2-RIP-Chip) upon inhibition and ectopic overexpression of miR-378a-3p revealed 63 and 20 putative miR-378a-3p targets, respectively. Effective targeting by miR-378a-3p was confirmed by luciferase reporter assays for MAX Network Transcriptional Repressor (MNT), Forkhead Box P1 (FOXP1), Interleukin 1 Receptor Associated Kinase 4 (IRAK4), and lncRNA Just Proximal To XIST (JPX), and by Western blot for IRAK4 and MNT. Overexpression of IRAK4 and MNT phenocopied the effect of miR-378a-3p inhibition. In summary, we identified miR-378a-3p as a miRNA with an oncogenic role in BL and identified IRAK4 and MNT as miR-378a-3p target genes that are involved in its growth regulatory role.

15.
J Cell Mol Med ; 24(18): 10970-10977, 2020 09.
Article in English | MEDLINE | ID: mdl-32794659

ABSTRACT

Sézary syndrome (SS) is an aggressive form of cutaneous T-cell lymphoma (CTCL) characterized by the presence of circulating malignant CD4+ T cells (Sézary cells) with many complex changes in the genome, transcriptome and epigenome. Epigenetic dysregulation seems to have an important role in the development and progression of SS as it was shown that SS cells are characterized by widespread changes in DNA methylation. In this study, we show that the transmembrane protein coding gene TMEM244 is ectopically expressed in all SS patients and SS-derived cell lines and, to a lower extent, in mycosis fungoides and in a fraction of T-cell lymphomas, but not in B-cell malignancies and mononuclear cells of healthy individuals. We show that in patient samples and in the T-cell lines TMEM244 expression is negatively correlated with the methylation level of its promoter. Furthermore, we demonstrate that TMEM244 expression can be activated in vitro by the CRISPR-dCas9-induced specific demethylation of TMEM244 promoter region. Since both, TMEM244 expression and its promoter demethylation, are not detected in normal lymphoid cells, they can be potentially used as markers in Sézary syndrome and some other T-cell lymphomas.


Subject(s)
DNA Methylation , Gene Expression Regulation/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Promoter Regions, Genetic/genetics , Sezary Syndrome/genetics , Aged , Aged, 80 and over , CRISPR-Cas Systems , Cell Line, Tumor , Female , Genetic Vectors , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Humans , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/metabolism , Male , Membrane Proteins/biosynthesis , Middle Aged , Mycosis Fungoides/genetics , Mycosis Fungoides/metabolism , Neoplasm Proteins/biosynthesis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Sezary Syndrome/metabolism
16.
Cancers (Basel) ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585857

ABSTRACT

Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.

17.
Cancers (Basel) ; 12(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512858

ABSTRACT

The expression of several microRNAs (miRNAs) is known to be changed in Burkitt lymphoma (BL), compared to its normal counterparts. Although for some miRNAs, a role in BL was demonstrated, for most of them, their function is unclear. In this study, we aimed to identify miRNAs that control BL cell growth. Two BL cell lines were infected with lentiviral pools containing either 58 miRNA inhibitors or 44 miRNA overexpression constructs. Eighteen constructs showed significant changes in abundance over time, indicating that they affected BL growth. The screening results were validated by individual green fluorescent protein (GFP) growth competition assays for fifteen of the eighteen constructs. For functional follow-up studies, we focused on miR-26b-5p, whose overexpression inhibited BL cell growth. Argonaute 2 RNA immunoprecipitation (Ago2-IP) in two BL cell lines revealed 47 potential target genes of miR-26b-5p. Overlapping the list of putative targets with genes showing a growth repression phenotype in a genome-wide CRISPR/Cas9 knockout screen, revealed eight genes. The top-5 candidates included EZH2, COPS2, KPNA2, MRPL15, and NOL12. EZH2 is a known target of miR-26b-5p, with oncogenic properties in BL. The relevance of the latter four targets was confirmed using sgRNAs targeting these genes in individual GFP growth competition assays. Luciferase reporter assay confirmed binding of miR-26b-5p to the predicted target site for KPNA2, but not to the other genes. In summary, we identified 18 miRNAs that affected BL cell growth in a loss- or gain-of-function screening. A tumor suppressor role was confirmed for miR-26b-5p, and this effect could at least in part be attributed to KPNA2, a known regulator of OCT4, c-jun, and MYC.

18.
Methods Mol Biol ; 1956: 269-282, 2019.
Article in English | MEDLINE | ID: mdl-30779039

ABSTRACT

MicroRNAs (miRNAs) play important roles in development, differentiation, and homeostasis by regulating protein translation. In B-cell lymphoma, many miRNAs have altered expression levels, and for a limited subset of them, experimental data supports their functional relevance in lymphoma pathogenesis. This chapter describes an unbiased next-generation sequencing (NGS)-based high-throughput screening approach to identify miRNAs that are involved in the control of cell growth. First, we provide a protocol for performing high-throughput screening for miRNA inhibition and overexpression. Second, we describe the procedure for next-generation sequencing library preparation. Third, we provide a workflow for data analysis.


Subject(s)
Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing/methods , Lymphoma, B-Cell/genetics , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Library , Humans , Lymphoma, B-Cell/pathology , Sequence Analysis, RNA/methods , Up-Regulation
19.
Mol Oncol ; 13(1): 26-45, 2019 01.
Article in English | MEDLINE | ID: mdl-30451365

ABSTRACT

Myelocytomatosis viral oncogene homolog (MYC) plays an important role in the regulation of many cellular processes, and its expression is tightly regulated at the level of transcription, translation, protein stability, and activity. Despite this tight regulation, MYC is overexpressed in many cancers and contributes to multiple hallmarks of cancer. In recent years, it has become clear that noncoding RNAs add a crucial additional layer to the regulation of MYC and its downstream effects. So far, twenty-five microRNAs and eighteen long noncoding RNAs that regulate MYC have been identified. Thirty-three miRNAs and nineteen lncRNAs are downstream effectors of MYC that contribute to the broad oncogenic role of MYC, including its effects on diverse hallmarks of cancer. In this review, we give an overview of this extensive, multilayered noncoding RNA network that exists around MYC. Current data clearly show explicit roles of crosstalk between MYC and ncRNAs to allow tumorigenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/metabolism , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Humans , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/metabolism , RNA, Long Noncoding/genetics
20.
Cell Physiol Biochem ; 49(1): 144-159, 2018.
Article in English | MEDLINE | ID: mdl-30184526

ABSTRACT

BACKGROUND/AIMS: Classical Hodgkin lymphoma (cHL) is among the most frequent lymphoma subtypes. The tumor cells originate from crippled germinal center (GC)-B cells that escaped from apoptosis. MicroRNAs (miRNAs) play important roles in B-cell maturation and aberrant expression of miRNAs contributes to the pathogenesis of cHL. Our aim was to identify oncogenic miRNAs relevant for growth of cHL using a high-throughput screening approach. METHODS: A lentiviral pool of 63 miRNA inhibition constructs was used to identify miRNAs essential to cell growth in three cHL cell lines in duplicate. As a negative control we also infected cHL cell lines with a lentiviral barcoded empty vector pool consisting of 222 constructs. The abundance of individual constructs was followed over time by a next generation sequencing approach. The effect on growth was confirmed using individual GFP competition assays and on apoptosis using Annexin-V staining. Our previously published Argonaute 2 (Ago2) immunoprecipitation (IP) data were used to identify target genes relevant for cell growth / apoptosis. Luciferase assays and western blotting were performed to confirm targeting by miRNAs. RESULTS: Four miRNA inhibition constructs, i.e. miR-449a-5p, miR-625-5p, let-7f-2-3p and miR-21-5p, showed a significant decrease in abundance in at least 4 of 6 infections. In contrast, none of the empty vector constructs showed a significant decrease in abundance in 3 or more of the 6 infections. The most abundantly expressed miRNA, i.e. miR-21-5p, showed significantly higher expression levels in cHL compared to GC-B cells. GFP competition assays confirmed the negative effect of miR-21-5p inhibition on HL cell growth. Annexin-V staining of cells infected with miR-21-5p inhibitor indicated a significant increase in apoptosis at day 7 and 9 after viral infection, consistent with the decrease in growth. Four miR-21-5p cell growth- and apoptosis-associated targets were AGO2-IP enriched in cHL cell lines and showed a significant decrease in expression in cHL cell lines in comparison to normal GC-B cells. For the two most abundantly expressed, i.e. BTG2 and PELI1, we confirmed targeting by miR-21-5p using luciferase assays and for PELI1 we also confirmed this at the protein level by western blotting. CONCLUSION: Using a miRNA loss-of-function high-throughput screen we identified four miRNAs with oncogenic effects in cHL and validated the results for the in cHL abundantly expressed miR-21-5p. MiR-21-5p is upregulated in cHL compared to GC-B cells and protects cHL cells from apoptosis possibly via targeting BTG2 and PELI1.


Subject(s)
MicroRNAs/metabolism , 3' Untranslated Regions , Antagomirs/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogenes/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...