Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 862: 160833, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36509281

ABSTRACT

Besides direct water abstraction, natural water scarcity in semi-arid and arid regions may be further exacerbated by human-assisted changes in vegetation composition, including the invasion by non-native plant species. Water abstraction by the invasive tree Prosopis juliflora and by the native Senegalia senegal was compared in the dry Great Rift Valley, Ethiopia. Transpiration rates were quantified using the heat ratio method on six trees each of P. julifora and S. senegal, growing adjacent to each other in the same environment. Water use for P. juliflora trees ranges from 1 to 26 L/day (an average of 4.74 ± 1.97), and that of S. senegal trees from 1 to 38 L/day (an average of 5.48 ± 5.29 during two study years). For both species, soil heat, latent heat, and soil moisture status influenced the rates of sap flow of trees; in addition, water use by P. juliflora trees was related to vapor pressure deficit; the higher the vapor pressure deficit, the higher the water abstraction by P. juliflora. Stand densities of pure P. juliflora and S. senegal were 1200-1600 trees and 400-600 trees per ha, respectively. At the stand scale, P. juliflora consumed approximately 6636 L/day/ha (transpiration: 242 mm per year) and S. senegal stands consumed 2723 L/day/ha (transpiration: 87 mm per year). That is, P. juliflora stands consumed three times more water than S. senegal stands, because of two reasons: (1) P. juliflora stands are denser than S. senegal stands, and denser stands consume more water than less dense stands, and (2) P. juliflora is evergreen and uses water all year-round, while S. senegal sheds its leaves during the peak dry seasons. Our findings suggest that, compared to S. senegal, P. juliflora invasion results in severe impacts on groundwater resources of the drylands of Ethiopia, with direct and indirect consequences to ecosystem services and rural livelihoods.


Subject(s)
Prosopis , Trees , Humans , Ecosystem , Ethiopia , Water , Senegal , Soil , Plant Transpiration
2.
Sci Rep ; 11(1): 2688, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514795

ABSTRACT

Dense impenetrable thickets of invasive trees and shrubs compete with other water users and thus disrupt ecosystem functioning and services. This study assessed water use by the evergreen Prosopis juliflora, one of the dominant invasive tree species in semi-arid and arid ecosystems in the tropical regions of Eastern Africa. The objectives of the study were to (1) analyze the seasonal water use patterns of P. juliflora in various locations in Afar Region, Ethiopia, (2) up-scale the water use from individual tree transpiration and stand evapotranspiration (ET) to the entire invaded area, and 3) estimate the monetary value of water lost due to the invasion. The sap flow rates of individual P. juliflora trees were measured using the heat ratio method while stand ET was quantified using the eddy covariance method. Transpiration by individual trees ranged from 1-36 L/day, with an average of 7 L of water per tree per day. The daily average transpiration of a Prosopis tree was about 3.4 (± 0.5) mm and the daily average ET of a dense Prosopis stand was about 3.7 (± 1.6) mm. Using a fractional cover map of P. juliflora (over an area of 1.18 million ha), water use of P. juliflora in Afar Region was estimated to be approximately 3.1-3.3 billion m3/yr. This volume of water would be sufficient to irrigate about 460,000 ha of cotton or 330,000 ha of sugar cane, the main crops in the area, which would generate an estimated net benefit of approximately US$ 320 million and US$ 470 million per growing season from cotton and sugarcane, respectively. Hence, P. juliflora invasion in the Afar Region has serious impacts on water availability and on the provision of other ecosystem services and ultimately on rural livelihoods.

3.
Ann Bot ; 97(5): 831-5, 2006 May.
Article in English | MEDLINE | ID: mdl-16478765

ABSTRACT

BACKGROUND AND AIMS: Stomatal oscillations have been reported in many plant species, but they are usually induced by sudden step changes in the environment when plants are grown under constant conditions. This study shows that in navel orange trees (Citrus sinensis) pronounced stomatal oscillations occur and persist under natural climatic conditions. METHODS: Oscillations in stomatal conductance were measured, and related to simultaneous measurements of leaf water potential, and flow rate of sap in the stems of young, potted plants. Cycling was also observed in soil-grown, mature orchard trees, as indicated by sap flow in stem and branches. KEY RESULTS: Oscillations in stomatal conductance were caused by the rapid propagation and synchronization of changes in xylem water potential throughout the tree, without rapid changes in atmospheric conditions. CONCLUSIONS: The results show marked stomatal oscillations persisting under natural climatic conditions and underscore the need to discover why this phenomenon is so pronounced in orange trees.


Subject(s)
Biological Clocks , Citrus/physiology , Plant Leaves/physiology , Microclimate , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...