Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cancer Res ; 84(7): 1084-1100, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266099

ABSTRACT

Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE: In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.


Subject(s)
Leukemia, Myeloid, Acute , Oxidative Phosphorylation , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Apoptosis
2.
Biochem Pharmacol ; 220: 115981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081370

ABSTRACT

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.


Subject(s)
Isoflavones , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Animals , Mice , Oxidative Phosphorylation , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic , Isoflavones/pharmacology , Purines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
3.
Res Sq ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162954

ABSTRACT

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.

5.
Cancer Immunol Immunother ; 72(5): 1273-1284, 2023 May.
Article in English | MEDLINE | ID: mdl-36434273

ABSTRACT

There is a need to improve response rates of immunotherapies in lung adenocarcinoma (AC). Extended (7-14 days) treatment of high glucocorticoid receptor (GR) expressing lung AC cells with dexamethasone (Dex) induces an irreversible senescence phenotype through chronic induction of p27. As the senescence-associated secretory phenotype (SASP) may have either tumor supporting or antitumor immunomodulatory effects, it was interest to examine the effects of Dex-induced senescence of lung AC cells on immune cells. Dex-induced senescence resulted in sustained production of CCL2, CCL4, CXCL1 and CXCL2, both in vitro and in vivo. After Dex withdrawal, secretion of these chemokines by the senescent cells attracted peripheral blood monocytes, T-cells, and NK cells. Following treatment with Dex-induced SASP protein(s), the peripheral blood lymphocytes exhibited higher cell count and tumor cytolytic activity along with enhanced Ki67 and perforin expression in T and NK cells. This cytolytic activity was partially attributed to NKG2D, which was upregulated in NK cells by SASP while its ligand MICA/B was upregulated in the senescent cells. Enhanced infiltrations of T and NK cells were observed in human lung AC xenografts in humanized NSG mice, following treatment with Dex. The findings substantiate the idea that induction of irreversible senescence in high-GR expressing subpopulations of lung AC tumors using Dex pretreatment enhances tumor immune infiltration and may subsequently improve the clinical outcome of current immunotherapies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Animals , Mice , Dexamethasone/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/metabolism , Killer Cells, Natural/metabolism , Cellular Senescence/genetics
6.
Cancer Metastasis Rev ; 41(4): 965-974, 2022 12.
Article in English | MEDLINE | ID: mdl-36451067

ABSTRACT

Epithelial-specific Maspin is widely known as a tumor suppressor. However, while the level of maspin expression is inversely correlated with tumor grade and stage, emerging clinical evidence shows a correlation between seemingly better differentiated tumor cells that express Maspin in both the nucleus and the cytoplasm, (n + c)Maspin, with a poor prognosis of many types of cancer. Biological studies demonstrate that Maspin plays an essential role in stem cell differentiation. In light of the recently established characterization of primed stem cells (P-SCs) in development, we propose, for the first time, that cancer stem cells (CSCs) also need to undergo priming (P-CSCs) before their transition to various progeny phenotypes. We envisage major differences in the steady state kinetics between P-SCs and P-CSCs. We further propose that P-CSCs of carcinoma are both marked and regulated by (n + c)Maspin. The concept of P-CSCs helps explain the apparent dichotomous relationships of (n + c)Maspin expression with cancer diagnosis and prognosis, and is supported by the evidence from mechanistic studies. We believe that the potential utility of (n + c)Maspin as a molecular marker of P-CSCs may significantly accelerate the advancement in our understanding of the genesis of tumor phenotypic plasticity in response to changes of tumor microenvironments (TME) or drug treatments. The vulnerabilities of the cellular state of (n + c)Maspin-expressing P-CSCs are also discussed as the rationale for future development of P-CSC-targeted chemotherapeutic and immunotherapeutic strategies.


Subject(s)
Neoplasms , Serpins , Serpins/genetics , Serpins/metabolism , Genes, Tumor Suppressor , Neoplastic Stem Cells/metabolism , Prognosis , Neoplasms/genetics
7.
Sci Rep ; 12(1): 11346, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790779

ABSTRACT

Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Ovarian Neoplasms , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Female , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Humans , Mice , Ovarian Neoplasms/drug therapy , Pyrimidines/metabolism , Tumor Microenvironment
8.
Blood Cancer J ; 11(6): 111, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099621

ABSTRACT

About 25% of patients with acute myeloid leukemia (AML) harbor FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations and their prognosis remains poor. Gilteritinib is a FLT3 inhibitor approved by the US FDA for use in adult FLT3-mutated relapsed or refractory AML patients. Monotherapy, while efficacious, shows short-lived responses, highlighting the need for combination therapies. Here we show that gilteritinib and CUDC-907, a dual inhibitor of PI3K and histone deacetylases, synergistically induce apoptosis in FLT3-ITD AML cell lines and primary patient samples and have striking in vivo efficacy. Upregulation of FLT3 and activation of ERK are mechanisms of resistance to gilteritinib, while activation of JAK2/STAT5 is a mechanism of resistance to CUDC-907. Gilteritinib and CUDC-907 reciprocally overcome these mechanisms of resistance. In addition, the combined treatment results in cooperative downregulation of cellular metabolites and persisting antileukemic effects. CUDC-907 plus gilteritinib shows synergistic antileukemic activity against FLT3-ITD AML in vitro and in vivo, demonstrating strong translational therapeutic potential.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Aniline Compounds/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols , Female , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred NOD , Mice, Transgenic , Morpholines/pharmacology , Pyrazines/pharmacology , Pyrimidines/pharmacology , THP-1 Cells , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
9.
Cancer Med ; 10(10): 3373-3387, 2021 05.
Article in English | MEDLINE | ID: mdl-33932119

ABSTRACT

OBJECTIVES: Treatment of both platinum resistant high grade (HG) and low-grade (LG) ovarian cancer (OVCA) poses significant challenges as neither respond well to conventional chemotherapy leading to morbidity and mortality. Identification of novel agents that can overcome chemoresistance is therefore critical. Previously, we have demonstrated that OVCA has basal upregulated unfolded protein response (UPR) and that targeting cellular processes leading to further and persistent upregulation of UPR leads to cell death. ONC201 is an orally bioavailable Dopamine Receptor D2 inhibitor demonstrating anticancer activity and was found to induce UPR. Given its unique properties, we hypothesized that ONC201 would overcome platinum resistance in OVCA. METHODS: Cisplatin sensitive and resistant HG OVCA and two primary LG OVCA cell lines were studied. Cell viability was determined using MTT assay. Cell migration was studied using wound healing assay. Apoptosis and mitochondrial membrane potential were investigated using flow cytometry. Analysis of pathway inhibition was performed by Western Blot. mRNA expression of UPR related genes were measured by qPCR. In vivo studies were completed utilizing axillary xenograft models. Co-testing with conventional chemotherapy was performed to study synergy. RESULTS: ONC201 significantly inhibited cell viability and migration in a dose dependent manner with IC50's from 1-20 µM for both cisplatin sensitive and resistant HG and LG-OVCA cell lines. ONC201 lead to upregulation of the pro-apoptotic arm of the UPR, specifically ATF-4/CHOP/ATF3 and increased the intrinsic apoptosispathway. The compensatory, pro-survival PI3K/AKT/mTOR pathway was downregulated. In vivo, weekly dosing of single agent ONC201 decreased xenograft tumor size by ~50% compared to vehicle. ONC201 also demonstrated significant synergy with paclitaxel in a highly platinum resistant OVCA cell-line (OV433). CONCLUSIONS: Our findings demonstrate that ONC201 can effectively overcome chemoresistance in OVCA cells by blocking pro-survival pathways and inducing the apoptotic arm of the UPR. This is a promising, orallybioavailable therapeutic agent to consider in clinical trials for patients with both HG and LG OVCA.


Subject(s)
Carcinoma, Ovarian Epithelial/drug therapy , Cell Death/drug effects , Imidazoles/pharmacology , Organoplatinum Compounds/pharmacology , Ovarian Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Unfolded Protein Response/drug effects , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Receptors, Dopamine D2/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
10.
Haematologica ; 106(5): 1262-1277, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32165486

ABSTRACT

Venetoclax is a promising agent in the treatment of acute myeloid leukemia, though its antileukemic activity is limited to combination therapies. Mcl-1 downregulation, Bim upregulation, and DNA damage have been identified as potential ways to enhance venetoclax activity. In this study, we combine venetoclax with the dual PI3K and histone deacetylase inhibitor CUDC-907, which can downregulate Mcl-1, upregulate Bim, and induce DNA damage, as well as downregulate c-Myc. We establish that CUDC-907 and venetoclax synergistically induce apoptosis in acute myeloid leukemia cell lines and primary acute myeloid leukemia patient samples ex vivo. CUDC-907 downregulates CHK1, Wee1, RRM1, and c-Myc, which were found to play a role in venetoclax-induced apoptosis. Interestingly, we found that venetoclax treatment enhances CUDC-907-induced DNA damage potentially through inhibition of DNA repair. In vivo results show that CUDC-907 enhances venetoclax efficacy in an acute myeloid leukemia cell line derived xenograft mouse model, supporting the development of CUDC-907 in combination with venetoclax for the treatment of acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Phosphatidylinositol 3-Kinases , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Morpholines , Pyrimidines , Sulfonamides , Xenograft Model Antitumor Assays
11.
Cancers (Basel) ; 12(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847115

ABSTRACT

Targeting oxidative phosphorylation (OXPHOS) is a promising strategy to improve treatment outcomes of acute myeloid leukemia (AML) patients. IACS-010759 is a mitochondrial complex I inhibitor that has demonstrated preclinical antileukemic activity and is being tested in Phase I clinical trials. However, complex I deficiency has been reported to inhibit apoptotic cell death through prevention of cytochrome c release. Thus, combining IACS-010759 with a BH3 mimetic may overcome this mechanism of resistance leading to synergistic antileukemic activity against AML. In this study, we show that IACS-010759 and venetoclax synergistically induce apoptosis in OXPHOS-reliant AML cell lines and primary patient samples and cooperatively target leukemia progenitor cells. In a relatively OXPHOS-reliant AML cell line derived xenograft mouse model, IACS-010759 treatment significantly prolonged survival, which was further enhanced by treatment with IACS-010759 in combination with venetoclax. Consistent with our hypothesis, IACS-010759 treatment indeed retained cytochrome c in mitochondria, which was completely abolished by venetoclax, resulting in Bak/Bax- and caspase-dependent apoptosis. Our preclinical data provide a rationale for further development of the combination of IACS-010759 and venetoclax for the treatment of patients with AML.

12.
Signal Transduct Target Ther ; 5(1): 17, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32296028

ABSTRACT

Venetoclax, an FDA-approved Bcl-2 selective inhibitor for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia (AML), is tolerated well in elderly patients with AML and has good overall response rates; however, resistance remains a concern. In this study, we show that targeting CDK9 with voruciclib in combination with venetoclax results in synergistic antileukemic activity against AML cell lines and primary patient samples. CDK9 inhibition enhances venetoclax activity through downregulation of Mcl-1 and c-Myc. However, downregulation of Mcl-1 is transient, which necessitates an intermittent treatment schedule to allow for repeated downregulation of Mcl-1. Accordingly, an every other day schedule of the CDK9 inhibitor is effective in vitro and in vivo in enhancing the efficacy of venetoclax. Our preclinical data provide a rationale for an intermittent drug administration schedule for the clinical evaluation of the combination treatment for AML.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cyclin-Dependent Kinase 9/genetics , Leukemia, Myeloid, Acute/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/administration & dosage , Adolescent , Adult , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Benzopyrans/administration & dosage , Cell Death/drug effects , Cell Line, Tumor , Female , Heterografts , Humans , Imino Furanoses/administration & dosage , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Middle Aged , Proto-Oncogene Proteins c-myc/genetics , Young Adult
13.
J Biol Chem ; 295(11): 3532-3552, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32024692

ABSTRACT

NF-κB is a pro-inflammatory transcription factor that critically regulates immune responses and other distinct cellular pathways. However, many NF-κB-mediated pathways for cell survival and apoptosis signaling in cancer remain to be elucidated. Cell cycle and apoptosis regulatory protein 1 (CARP-1 or CCAR1) is a perinuclear phosphoprotein that regulates signaling induced by anticancer chemotherapy and growth factors. Although previous studies have reported that CARP-1 is a part of the NF-κB proteome, regulation of NF-κB signaling by CARP-1 and the molecular mechanism(s) involved are unclear. Here, we report that CARP-1 directly binds the NF-κB-activating kinase IκB kinase subunit γ (NEMO or NF-κB essential modulator) and regulates the chemotherapy-activated canonical NF-κB pathway. Importantly, blockade of NEMO-CARP-1 binding diminished NF-κB activation, indicated by reduced phosphorylation of its subunit p65/RelA by the chemotherapeutic agent adriamycin (ADR), but not NF-κB activation induced by tumor necrosis factor α (TNFα), interleukin (IL)-1ß, or epidermal growth factor. High-throughput screening of a chemical library yielded a small molecule inhibitor of NEMO-CARP-1 binding, termed selective NF-κB inhibitor 1 (SNI)-1). We noted that SNI-1 enhances chemotherapy-dependent growth inhibition of a variety of cancer cells, including human triple-negative breast cancer (TNBC) and patient-derived TNBC cells in vitro, and attenuates chemotherapy-induced secretion of the pro-inflammatory cytokines TNFα, IL-1ß, and IL-8. SNI-1 also enhanced ADR or cisplatin inhibition of murine TNBC tumors in vivo and reduced systemic levels of pro-inflammatory cytokines. We conclude that inhibition of NEMO-CARP-1 binding enhances responses of cancer cells to chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins/metabolism , I-kappa B Kinase/metabolism , Animals , Apoptosis Regulatory Proteins/chemistry , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cytokines/metabolism , DNA Damage , Doxorubicin/pharmacology , Epitopes/metabolism , Inflammation Mediators/metabolism , Kinetics , Mice, Inbred BALB C , Models, Biological , Models, Molecular , Phosphorylation/drug effects , Protein Binding/drug effects , Signal Transduction/drug effects , Thermodynamics , Transcription Factor RelA/metabolism
14.
Clin Cancer Res ; 25(22): 6815-6826, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31320594

ABSTRACT

PURPOSE: To investigate the efficacy of the combination of the FLT3 inhibitors midostaurin or gilteritinib with the Bcl-2 inhibitor venetoclax in FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) and the underlying molecular mechanism. EXPERIMENTAL DESIGN: Using both FLT3-ITD cell lines and primary patient samples, Annexin V-FITC/propidium iodide staining and flow cytometry analysis were used to quantify cell death induced by midostaurin or gilteritinib, alone or in combination with venetoclax. Western blot analysis was performed to assess changes in protein expression levels of members of the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, and members of the Bcl-2 family of proteins. The MV4-11-derived xenograft mouse model was used to assess in vivo efficacy of the combination of gilteritinib and venetoclax. Lentiviral overexpression of Mcl-1 was used to confirm its role in cell death induced by midostaurin or gilteritinib with venetoclax. Changes of Mcl-1 transcript levels were assessed by RT-PCR. RESULTS: The combination of midostaurin or gilteritinib with venetoclax potently and synergistically induces apoptosis in FLT3-ITD AML cell lines and primary patient samples. The FLT3 inhibitors induced downregulation of Mcl-1, enhancing venetoclax activity. Phosphorylated-ERK expression is induced by venetoclax but abolished by the combination of venetoclax with midostaurin or gilteritinib. Simultaneous downregulation of Mcl-1 by midostaurin or gilteritinib and inhibition of Bcl-2 by venetoclax results in "free" Bim, leading to synergistic induction of apoptosis. In vivo results show that gilteritinib in combination with venetoclax has therapeutic potential. CONCLUSIONS: Inhibition of Bcl-2 via venetoclax synergistically enhances the efficacy of midostaurin and gilteritinib in FLT3-mutated AML.See related commentary by Perl, p. 6567.


Subject(s)
Aniline Compounds/pharmacology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrazines/pharmacology , Staurosporine/analogs & derivatives , fms-Like Tyrosine Kinase 3/genetics , Animals , Apoptosis/drug effects , Biomarkers, Tumor , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Duplication , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Staurosporine/pharmacology , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 18(10): 1787-1799, 2019 10.
Article in English | MEDLINE | ID: mdl-31289137

ABSTRACT

Folate-dependent one-carbon (C1) metabolism is compartmentalized into the mitochondria and cytosol and supports cell growth through nucleotide and amino acid biosynthesis. Mitochondrial C1 metabolism, including serine hydroxymethyltransferase (SHMT) 2, provides glycine, NAD(P)H, ATP, and C1 units for cytosolic biosynthetic reactions, and is implicated in the oncogenic phenotype across a wide range of cancers. Whereas multitargeted inhibitors of cytosolic C1 metabolism, such as pemetrexed, are used clinically, there are currently no anticancer drugs that specifically target mitochondrial C1 metabolism. We used molecular modeling to design novel small-molecule pyrrolo[3,2-d]pyrimidine inhibitors targeting mitochondrial C1 metabolism at SHMT2. In vitro antitumor efficacy was established with the lead compounds (AGF291, AGF320, AGF347) toward lung, colon, and pancreatic cancer cells. Intracellular targets were identified by metabolic rescue with glycine and nucleosides, and by targeted metabolomics using a stable isotope tracer, with confirmation by in vitro assays with purified enzymes. In addition to targeting SHMT2, inhibition of the cytosolic purine biosynthetic enzymes, ß-glycinamide ribonucleotide formyltransferase and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase, and SHMT1 was also established. AGF347 generated significant in vivo antitumor efficacy with potential for complete responses against both early-stage and upstage MIA PaCa-2 pancreatic tumor xenografts, providing compelling proof-of-concept for therapeutic targeting of SHMT2 and cytosolic C1 enzymes by this series. Our results establish structure-activity relationships and identify exciting new drug prototypes for further development as multitargeted antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Carbon/metabolism , Cytosol/metabolism , Mitochondria/metabolism , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antineoplastic Agents/chemistry , Biosynthetic Pathways/drug effects , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Cytosol/drug effects , Female , Inhibitory Concentration 50 , Metabolomics , Mice, SCID , Mitochondria/drug effects , Purines/biosynthesis , Pyrimidines/chemistry , Pyrroles/chemistry , Xenograft Model Antitumor Assays
16.
PLoS One ; 14(4): e0215089, 2019.
Article in English | MEDLINE | ID: mdl-31002675

ABSTRACT

AIM: Barrett's esophagus (BE) is a predisposing factor of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma (ECA/GEJ Aca). BE patients are stratified and subsequently monitored according to the risk of malignant progression by the combination of endoscopy and biopsy. This study is to evaluate the maspin expression patterns as early diagnostic markers of malignancy in BE patients. MATERIALS AND METHODS: Immunohistochemistry (IHC) staining was performed on 62 archival core biopsies from 35 patients, including BE without dysplasia (intestinal metaplasia, IM), BE with low grade dysplasia, BE with high grade dysplasia, carcinoma in situ, and well to poorly differentiated ECA/GEJ Aca (PD-ECA/GEJ Aca). The intensity and the subcellular distribution of immunoreactivity were evaluated microscopically. Statistical analysis was performed using the χ2 and Fisher exact tests. RESULTS: The level of epithelial-specific tumor suppressor maspin protein inversely correlated with the progression from IM to PD-ECA/GEJ Aca. Lesions of each pathological grade could be divided into subtypes that exhibited distinct maspin subcellular distribution patterns, including nuclear only (Nuc), combined nuclear and cytoplasmic (Nuc+Cyt), cytoplasmic only (Cyt) and overall negligible (Neg). The Cyt subtype, which was minor in both IM and dysplasia (approximately 10%), was predominant in ECA/GEJ Aca as early as well-differentiated lesions (more than 50%: p = 0.0092). In comparison, nuclear staining of the tumor suppressor TP53 was heterogeneous in dysplasia, and did not correlate with the differentiation grades of ECA/GEJ Aca. CONCLUSION: The Cyt subtype of maspin expression pattern in core biopsies of BE patients may serve as a molecular marker for early diagnosis of ECA/GEJ Aca.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Esophagus/pathology , Metaplasia/pathology , Precancerous Conditions/pathology , Serpins/metabolism , Adenocarcinoma/metabolism , Barrett Esophagus/metabolism , Biomarkers, Tumor/metabolism , Case-Control Studies , Disease Progression , Esophageal Neoplasms/metabolism , Esophagogastric Junction/metabolism , Esophagus/metabolism , Humans , Metaplasia/metabolism , Precancerous Conditions/metabolism
17.
Haematologica ; 104(11): 2225-2240, 2019 11.
Article in English | MEDLINE | ID: mdl-30819918

ABSTRACT

Induction therapy for patients with acute myeloid leukemia (AML) has remained largely unchanged for over 40 years, while overall survival rates remain unacceptably low, highlighting the need for new therapies. The PI3K/Akt pathway is constitutively active in the majority of patients with AML. Given that histone deacetylase inhibitors have been shown to synergize with PI3K inhibitors in preclinical AML models, we investigated the novel dual-acting PI3K and histone deacetylase inhibitor CUDC-907 in AML cells both in vitro and in vivo We demonstrated that CUDC-907 induces apoptosis in AML cell lines and primary AML samples and shows in vivo efficacy in an AML cell line-derived xenograft mouse model. CUDC-907-induced apoptosis was partially dependent on Mcl-1, Bim, and c-Myc. CUDC-907 induced DNA damage in AML cells while sparing normal hematopoietic cells. Downregulation of CHK1, Wee1, and RRM1, and induction of DNA damage also contributed to CUDC-907-induced apoptosis of AML cells. In addition, CUDC-907 treatment decreased leukemia progenitor cells in primary AML samples ex vivo, while also sparing normal hematopoietic progenitor cells. These findings support the clinical development of CUDC-907 for the treatment of AML.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Biomarkers , Cell Line, Tumor , DNA Damage/drug effects , Disease Models, Animal , Female , Genes, myc , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Xenograft Model Antitumor Assays
18.
Cancer Metastasis Rev ; 37(4): 655-663, 2018 12.
Article in English | MEDLINE | ID: mdl-30484007

ABSTRACT

The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.


Subject(s)
Neoplasms/drug therapy , Neoplasms/pathology , Adaptation, Physiological , Animals , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Neoplasm Metastasis , Precision Medicine/methods
19.
J Cell Biochem ; 118(7): 1639-1647, 2017 07.
Article in English | MEDLINE | ID: mdl-28262971

ABSTRACT

To improve the precision of molecular diagnosis and to develop and guide targeted therapies of breast cancer, it is essential to determine the mechanisms that underlie the specific tumor phenotypes. To this end, the application of a snapshot of gene expression profile for breast cancer diagnosis and prognosis is fundamentally challenged since the tissue-based data are derived from heterogonous cell types and are not likely to reflect the dynamics of context-dependent tumor progression and drug sensitivity. The intricate network of epithelial differentiation program can be concertedly controlled by tumor suppressor maspin, a homologue of clade B serine protease inhibitors (serpin), through its multifaceted molecular interactions in multiple subcellular localizations. Unlike most other serpins that are expressed in multiple cell types, maspin is epithelial specific and has distinct roles in luminal and myoepithelial cells. Endogenously expressed maspin has been found in the nucleus and cytoplasm, and detected on the surface of cell membrane. It is also secreted free and as an exosomal cargo protein. Research in the field has led to the identification of the maspin targets and maspin-associated molecules, as well as the structural determinants of its suppressive functions. The current review discusses the possibility for maspin to serve as a cell type-specific and context-sensitive marker to improve the precision of breast cancer diagnosis and prognosis. These advancements further suggest a new window of opportunity for designing novel maspin-based chemotherapeutic agents with improved anti-cancer potency. J. Cell. Biochem. 118: 1639-1647, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Breast Neoplasms/metabolism , Precision Medicine/methods , Serpins/metabolism , Animals , Breast Neoplasms/genetics , Epithelial Cells/metabolism , Humans , Mammary Glands, Human , Serpins/genetics
20.
Cancer Res ; 77(4): 886-896, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27923833

ABSTRACT

Maspin (SerpinB5) is an epithelial-specific tumor suppressor gene product that displays context-dependent cellular functions. Maspin-deficient mouse models created to date have not definitively established maspin functions critical for cancer suppression. In this study, we generated a mouse strain in which exon 4 of the Maspin gene was deleted, confirming its essential role in development but also enabling a breeding scheme to bypass embryonic lethality. Phenotypic characterization of this viable strain established that maspin deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities. Specifically, maspin-deficient mice exhibited pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis. These cancer phenotypes were accompanied by increased inflammatory stroma. These mice also displayed the autoimmune disorder alopecia aerate. Overall, our findings defined context-specific tumor suppressor roles for maspin in a clinically relevant model to study maspin functions in cancer and other pathologies. Cancer Res; 77(4); 886-96. ©2017 AACR.


Subject(s)
Embryonic Development , Serpins/physiology , Tumor Suppressor Proteins/physiology , Alopecia Areata/etiology , Animals , Female , Histone Deacetylase 1/physiology , Male , Mammary Glands, Animal/pathology , Mice , Mice, Inbred C57BL , Organ Specificity , Prostate/pathology , Serpins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL