Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 66(2): 345-356, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33501566

ABSTRACT

Many cities aim to progress toward their sustainability and public health goals by increasing use of their public transit systems. However, without adequate protective infrastructure that provides thermally comfortable conditions for public transit riders, it can be challenging to reach these goals in hot climates. We took micrometeorological measurements and surveyed riders about their perceptions of heat and heat-coping behaviors at bus stops with a variety of design attributes in Phoenix, AZ, USA, during the summer of 2018. We identified the design attributes and coping behaviors that made riders feel cooler. We observed that current infrastructure standards and material choices for bus stops in Phoenix are insufficient to provide thermal comfort, and can even expose riders to health risks. Almost half of the study participants felt hot or very hot at the time they were surveyed, and more than half reported feeling thermally uncomfortable. On average, shade reduced the physiological equivalent temperature (PET) by 19 °C. Moreover, we found significant diurnal differences in PET reductions from the shade provided by various design attributes. For instance, all design attributes were effective in reducing PET in the morning; however, a vegetated awning did not provide statistically significant shade reductions in the afternoon. Temperatures of sun-exposed surfaces of man-made materials exceeded skin burn thresholds in the afternoon, but shade was effective in bringing the same surfaces to safe levels. Aesthetically pleasing stops were rated as cooler than stops rated as less beautiful. We conclude that cities striving to increase public transit use should prioritize thermal comfort when designing public transit stops in hot climates.


Subject(s)
Hot Temperature , Thermosensing , Cities , Climate , Humans , Temperature
2.
Int J Biometeorol ; 66(2): 427-429, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34846568

Subject(s)
Students , Humans
3.
Int J Biometeorol ; 65(6): 779-803, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33427946

ABSTRACT

Sensing and measuring meteorological and physiological parameters of humans, animals, and plants are necessary to understand the complex interactions that occur between atmospheric processes and the health of the living organisms. Advanced sensing technologies have provided both meteorological and biological data across increasingly vast spatial, spectral, temporal, and thematic scales. Information and communication technologies have reduced barriers to data dissemination, enabling the circulation of information across different jurisdictions and disciplines. Due to the advancement and rapid dissemination of these technologies, a review of the opportunities for sensing the health effects of weather and climate change is necessary. This paper provides such an overview by focusing on existing and emerging technologies and their opportunities and challenges for studying the health effects of weather and climate change on humans, animals, and plants.


Subject(s)
Climate Change , Weather , Animals , Humans , Meteorology , Plants , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...