Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Environ Monit Assess ; 196(4): 345, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438687

ABSTRACT

Defining the environmental occurrence and distribution of chemicals of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) in coastal aquatic systems, is often difficult and complex. In this study, 70 compounds representing several classes of pharmaceuticals, including antibiotics, anti-inflammatories, insect repellant, antibacterial, antidepressants, chemotherapy drugs, and X-ray contrast media compounds, were found in dreissenid mussel (zebra/quagga; Dreissena spp.) tissue samples. Overall concentration and detection frequencies varied significantly among sampling locations, site land-use categories, and sites sampled proximate and downstream of point source discharge. Verapamil, triclocarban, etoposide, citalopram, diphenhydramine, sertraline, amitriptyline, and DEET (N,N-diethyl-meta-toluamide) comprised the most ubiquitous PPCPs (> 50%) detected in dreissenid mussels. Among those compounds quantified in mussel tissue, sertraline, metformin, methylprednisolone, hydrocortisone, 1,7-dimethylxanthine, theophylline, zidovudine, prednisone, clonidine, 2-hydroxy-ibuprofen, iopamidol, and melphalan were detected at concentrations up to 475 ng/g (wet weight). Antihypertensives, antibiotics, and antidepressants accounted for the majority of the compounds quantified in mussel tissue. The results showed that PPCPs quantified in dreissenid mussels are occurring as complex mixtures, with 4 to 28 compounds detected at one or more sampling locations. The magnitude and composition of PPCPs detected were highest for sites not influenced by either WWTP or CSO discharge (i.e., non-WWTPs), strongly supporting non-point sources as important drivers and pathways for PPCPs detected in this study. As these compounds are detected at inshore and offshore locations, the findings of this study indicate that their persistence and potential risks are largely unknown, thus warranting further assessment and prioritization of these emerging contaminants in the Great Lakes Basin.


Subject(s)
Bivalvia , Cosmetics , Animals , Sertraline , Lakes , Environmental Monitoring , Anti-Bacterial Agents , Etoposide , Antidepressive Agents , Pharmaceutical Preparations
2.
Preprint in English | bioRxiv | ID: ppbiorxiv-486830

ABSTRACT

Alterations in the myeloid immune compartment have been observed in COVID-19, but the specific mechanisms underlying these impairments are not completely understood. Here we examined the functionality of classical CD14+ monocytes as a main myeloid cell component in well-defined cohorts of patients with mild and moderate COVID-19 during the acute phase of infection and compared them to that of healthy individuals. We found that ex vivo isolated CD14+ monocytes from mild and moderate COVID-19 patients display specific patterns of costimulatory and inhibitory receptors that clearly distinguish them from healthy monocytes, as well as altered expression of histone marks and a dysfunctional metabolic profile. Decreased NF{kappa}B activation in COVID-19 monocytes ex vivo is accompanied by an intact type I IFN antiviral response. Subsequent pathogen sensing ex vivo led to a state of functional unresponsiveness characterized by a defect in pro-inflammatory cytokine expression, NF{kappa}B-driven cytokine responses and defective type I IFN response in moderate COVID-19 monocytes. Transcriptionally, COVID-19 monocytes switched their gene expression signature from canonical innate immune functions to a pro-thrombotic phenotype characterized by increased expression of pathways involved in hemostasis and immunothrombosis. In response to SARS-CoV-2 or other viral or bacterial components, monocytes displayed defects in the epigenetic remodelling and metabolic reprogramming that usually occurs upon pathogen sensing in innate immune cells. These results provide a potential mechanism by which innate immune dysfunction in COVID-19 may contribute to disease pathology.

3.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
Preprint in English | medRxiv | ID: ppmedrxiv-21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.

4.
Phys Ther ; 99(8): 1039-1047, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31220323

ABSTRACT

Chronic, noncommunicable diseases have replaced acute, infectious diseases as the leading causes of global mortality and morbidity. Efforts among physical therapists to address noncommunicable diseases have primarily focused on the promotion of healthy behaviors among individual clients. However, the strongest predictors of chronic disease are tied to where we live, work, learn, and play, our families, and our communities. Population health frameworks can help us better understand the complex interrelations between individuals' health condition and their social and physical environment over time and also inform the development of effective programs and policies that improve the health of individuals and communities. The objectives of this article are to: (1) define population health, prevention, and health promotion; (2) provide a current perspective on the utility of population health frameworks in physical therapy; and (3) identify opportunities for the expanded use of population health frameworks in physical therapist practice, research, and education.


Subject(s)
Biomedical Research , Health Knowledge, Attitudes, Practice , Health Promotion , Physical Therapists/education , Population Health , Chronic Disease/prevention & control , Health Behavior , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...