Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 13(1): 6384, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289231

ABSTRACT

With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.


Subject(s)
Cognition Disorders , Down Syndrome , Mice , Animals , Down Syndrome/genetics , Down Syndrome/metabolism , DNA Copy Number Variations/genetics , Disease Models, Animal , Cognition Disorders/genetics , Chromatin/genetics , Mice, Transgenic
2.
Elife ; 102021 05 27.
Article in English | MEDLINE | ID: mdl-34042586

ABSTRACT

Understanding how neuronal circuits control nociceptive processing will advance the search for novel analgesics. We use functional imaging to demonstrate that lateral hypothalamic parvalbumin-positive (LHPV) glutamatergic neurons respond to acute thermal stimuli and a persistent inflammatory irritant. Moreover, their chemogenetic modulation alters both pain-related behavioral adaptations and the unpleasantness of a noxious stimulus. In two models of persistent pain, optogenetic activation of LHPV neurons or their ventrolateral periaqueductal gray area (vlPAG) axonal projections attenuates nociception, and neuroanatomical tracing reveals that LHPV neurons preferentially target glutamatergic over GABAergic neurons in the vlPAG. By contrast, LHPV projections to the lateral habenula regulate aversion but not nociception. Finally, we find that LHPV activation evokes additive to synergistic antinociceptive interactions with morphine and restores morphine antinociception following the development of morphine tolerance. Our findings identify LHPV neurons as a lateral hypothalamic cell type involved in nociception and demonstrate their potential as a target for analgesia.


Subject(s)
Behavior, Animal , Hypothalamic Area, Lateral/physiopathology , Nociception , Pain/physiopathology , Pain/psychology , Analgesics, Opioid/therapeutic use , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Calcium Signaling , Disease Models, Animal , Drug Tolerance , Female , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/metabolism , Male , Mice, Inbred C57BL , Microscopy, Fluorescence , Morphine/pharmacology , Neural Pathways/metabolism , Neural Pathways/physiopathology , Neuroanatomical Tract-Tracing Techniques , Nociception/drug effects , Optogenetics , Pain/metabolism , Pain/prevention & control , Parvalbumins/genetics , Parvalbumins/metabolism
3.
Neuropsychopharmacology ; 46(9): 1574-1583, 2021 08.
Article in English | MEDLINE | ID: mdl-34007042

ABSTRACT

Drugs of abuse regulate the activity of the mesolimbic dopamine (DA) system, and drug-induced changes in ventral tegmental area (VTA) cellular activity and gene regulation are linked to behavioral outputs associated with addiction. Previous work from our lab determined that VTA serum- and glucocorticoid-inducible kinase 1 (SGK1) transcription and catalytic activity were increased by repeated cocaine administration; however, it was unknown if these biochemical changes contributed to cocaine-elicited behaviors. Using transgenic and viral-mediated manipulations, we investigated the role of VTA SGK1 catalytic activity in regulating cocaine conditioned place preference and self-administration. We showed intra-VTA infusion of a catalytically inactive SGK1 mutant (K127Q) significantly decreased cocaine conditioned place preference (CPP). Further, we found that K127Q expression in VTA DA neurons significantly decreased cocaine CPP, while this same manipulation in VTA GABA neurons had no effect. However, blunted VTA DA SGK1 catalytic activity did not alter cocaine self-administration. Altogether, these studies identify the specific VTA cells critical for SGK1-mediated effects on cocaine CPP but not self-administration.


Subject(s)
Cocaine , Ventral Tegmental Area , Cocaine/pharmacology , Conditioning, Classical , Dopaminergic Neurons , Glucocorticoids
4.
Neuropsychopharmacology ; 46(9): 1584-1593, 2021 08.
Article in English | MEDLINE | ID: mdl-33941861

ABSTRACT

Territorial reactive aggression in mice is used to study the biology of aggression-related behavior and is also a critical component of procedures used to study mood disorders, such as chronic social defeat stress. However, quantifying mouse aggression in a systematic, representative, and easily adoptable way that allows direct comparison between cohorts within or between studies remains a challenge. Here, we propose a structural equation modeling approach to quantify aggression observed during the resident-intruder procedure. Using data for 658 sexually experienced CD-1 male mice generated by three research groups across three institutions over a 10-year period, we developed a higher-order confirmatory factor model wherein the combined contributions of latency to the first attack, number of attack bouts, and average attack duration on each trial day (easily observable metrics that require no specialized equipment) are used to quantify individual differences in aggression. We call our final model the Mouse Aggression Detector (MAD) model. Correlation analyses between MAD model factors estimated from multiple large datasets demonstrate generalizability of this measurement approach, and we further establish the stability of aggression scores across time within cohorts and demonstrate the utility of MAD for selecting aggressors which will generate a susceptible phenotype in social defeat experiments. Thus, this novel aggression scoring technique offers a systematic, high-throughput approach for aggressor selection in chronic social defeat stress studies and a more consistent and accurate study of mouse aggression itself.


Subject(s)
Aggression , Social Defeat , Animals , Behavior, Animal , Individuality , Male , Mice , Reference Standards , Social Behavior , Stress, Psychological
5.
Neuron ; 109(9): 1479-1496.e6, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33765445

ABSTRACT

The Akt family of kinases exerts many of its cellular effects via the activation of the mammalian target of rapamycin (mTOR) kinase through a series of intermediary proteins. Multiple lines of evidence have identified Akt-family kinases as candidate schizophrenia and bipolar disorder genes. Although dysfunction of the prefrontal cortex (PFC) is a key feature of both schizophrenia and bipolar disorder, no studies have comprehensively assessed potential alterations in Akt-mTOR pathway activity in the PFC of either disorder. Here, we examined the activity and expression profile of key proteins in the Akt-mTOR pathway in bipolar disorder and schizophrenia homogenates from two different PFC subregions. Our findings identify reduced Akt-mTOR PFC signaling in a subset of bipolar disorder subjects. Using a reverse-translational approach, we demonstrated that Akt hypofunction in the PFC is sufficient to give rise to key cognitive phenotypes that are paralleled by alterations in synaptic connectivity and function.


Subject(s)
Bipolar Disorder/metabolism , Cognitive Dysfunction/metabolism , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Bipolar Disorder/pathology , Bipolar Disorder/physiopathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Female , Humans , Male , Neurons/pathology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology
6.
Nat Commun ; 11(1): 4484, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901027

ABSTRACT

Chronic stress is a key risk factor for mood disorders like depression, but the stress-induced changes in brain circuit function and gene expression underlying depression symptoms are not completely understood, hindering development of novel treatments. Because of its projections to brain regions regulating reward and anxiety, the ventral hippocampus is uniquely poised to translate the experience of stress into altered brain function and pathological mood, though the cellular and molecular mechanisms of this process are not fully understood. Here, we use a novel method of circuit-specific gene editing to show that the transcription factor ΔFosB drives projection-specific activity of ventral hippocampus glutamatergic neurons causing behaviorally diverse responses to stress. We establish molecular, cellular, and circuit-level mechanisms for depression- and anxiety-like behavior in response to stress and use circuit-specific gene expression profiling to uncover novel downstream targets as potential sites of therapeutic intervention in depression.


Subject(s)
Avoidance Learning/physiology , Hippocampus/physiology , Proto-Oncogene Proteins c-fos/physiology , Animals , Anxiety/metabolism , Behavior, Animal/physiology , Gene Knockout Techniques , Gene Silencing , Hippocampus/anatomy & histology , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Proto-Oncogene Proteins c-fos/deficiency , Proto-Oncogene Proteins c-fos/genetics , Social Behavior , Stress, Psychological
7.
Biol Psychiatry ; 87(6): 492-501, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31601425

ABSTRACT

BACKGROUND: Depression affects women nearly twice as often as men, but the neurobiological underpinnings of this discrepancy are unclear. Preclinical studies in male mice suggest that activity of ventral hippocampus (vHPC) neurons projecting to the nucleus accumbens (NAc) regulates mood-related behavioral responses to stress. We sought to characterize this circuit in both sexes and to investigate its role in potential sex differences in models of depression. METHODS: We used male and female adult C57BL/6J mice in the subchronic variable stress model to precipitate female-specific reduction in sucrose preference and performed gonadectomies to test the contributions of gonadal hormones to this stress response. In addition, ex vivo slice electrophysiology of transgenic Cre-inducible Rosa-eGFP-L10a mice in combination with retrograde viral tracing to identify circuits was used to test contributions of gonadal hormones to sex differences in vHPC afferents. Finally, we used an intersecting viral DREADD (designer receptor exclusively activated by designer drugs) strategy to manipulate vHPC-NAc excitability directly in awake behaving mice. RESULTS: We show a testosterone-dependent lower excitability in male versus female vHPC-NAc neurons and corresponding testosterone-dependent male resilience to reduced sucrose preference after subchronic variable stress. Importantly, we show that long-term DREADD stimulation of vHPC-NAc neurons causes decreased sucrose preference in male mice after subchronic variable stress, whereas DREADD inhibition of this circuit prevents this effect in female mice. CONCLUSIONS: We demonstrate a circuit-specific sex difference in vHPC-NAc neurons that is dependent on testosterone and causes susceptibility to stress in female mice. These data provide a substantive mechanism linking gonadal hormones to cellular excitability and anhedonia-a key feature in depressive states.


Subject(s)
Androgens , Nucleus Accumbens , Animals , Female , Hippocampus , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
J Neurosci ; 39(42): 8305-8314, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31477569

ABSTRACT

Drug addiction results in part from maladaptive learning, including the formation of strong associations between the drug and the circumstances of consumption. However, drug-induced changes in gene expression underlying the saliency of these associations remain understudied. Consolidation of explicit memories occurs within the hippocampus, and we have shown that spatial learning induces expression of the transcription factor ΔFosB in hippocampus and that this induction is critical for learning. Drugs of abuse also upregulate ΔFosB in hippocampus, but the mechanism of its induction by cocaine and its role in hippocampus-dependent cocaine responses is unknown. We investigated differences in mouse dorsal and ventral hippocampal ΔFosB expression in response to chronic cocaine, because these regions appear to regulate distinct cocaine-related behaviors. We found that cocaine-mediated induction of ΔFosB was subregion-specific, and that ΔFosB transcriptional activity in both the dorsal and ventral hippocampus is necessary for cocaine conditioned place preference. Further, we characterize changes in histone modifications at the FosB promoter in hippocampus in response to chronic cocaine and found that locus-specific epigenetic modification is essential for FosB induction and multiple hippocampus-dependent behaviors, including cocaine place preference. Collectively, these findings suggest that exposure to cocaine induces histone modification at the hippocampal FosB gene promoter to cause ΔFosB induction critical for cocaine-related learning.SIGNIFICANCE STATEMENT Although cocaine addiction is driven in part by the formation of indelible associations between the drug and the environment, paraphernalia, and circumstances of use, and although this type of associative learning is dependent upon changes in gene expression in a brain region called the hippocampus, the mechanisms by which cocaine alters hippocampal gene expression to drive formation of these associations is poorly understood. Here, we demonstrate that chronic cocaine engages locus-specific changes in the epigenetic profile of the FosB gene in the hippocampus, and that these alterations are required for cocaine-dependent gene expression and cocaine-environment associations. This work provides novel insight into addiction etiology and potential inroads for therapeutic intervention in cocaine addiction.


Subject(s)
Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Epigenesis, Genetic/drug effects , Gene Expression Regulation/drug effects , Hippocampus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Animals , Hippocampus/drug effects , Male , Mice , Motor Activity/drug effects , Up-Regulation/drug effects
9.
Neuroscience ; 406: 225-233, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30902680

ABSTRACT

Neural proliferation in the dentate gyrus (DG) is closely linked with learning and memory, but the transcriptional programming that drives adult proliferation remains incompletely understood. Our lab previously elucidated the critical role of the transcription factor ΔFosB in the dorsal hippocampus (dHPC) in learning and memory, and the FosB gene has been suggested to play a role in neuronal proliferation. However, the subregion-specific and potentially cell-autonomous role of dHPC ΔFosB in neurogenesis-dependent learning has not been studied. Here, we crossed neurotensin receptor-2 (NtsR2) Cre mice, which express Cre within the subgranular zone (SGZ) of dHPC DG, with floxed FosB mice to show that knockout of ΔFosB in hippocampal SGZ neurons reduces antidepressant-induced neurogenesis and impedes hippocampus-dependent learning in the novel object recognition task. Taken together, these data indicate that FosB gene expression in SGZ is necessary for both hippocampal neurogenesis and memory formation.


Subject(s)
Hippocampus/metabolism , Maze Learning/physiology , Neurogenesis/physiology , Neurons/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Animals , Female , Hippocampus/cytology , Learning/physiology , Male , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-fos/genetics
11.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30079375

ABSTRACT

Both the function of hippocampal neurons and hippocampus-dependent behaviors are dependent on changes in gene expression, but the specific mechanisms that regulate gene expression in hippocampus are not yet fully understood. The stable, activity-dependent transcription factor ΔFosB plays a role in various forms of hippocampal-dependent learning and in the structural plasticity of synapses onto CA1 neurons. The authors examined the consequences of viral-mediated overexpression or inhibition of ΔFosB on the function of adult mouse hippocampal CA1 neurons using ex vivo slice whole-cell physiology. We found that the overexpression of ΔFosB decreased the excitability of CA1 pyramidal neurons, while inhibition increased excitability. Interestingly, these manipulations did not affect resting membrane potential or spike frequency adaptation, but ΔFosB overexpression reduced hyperpolarization-activated current. Both ΔFosB overexpression and inhibition decreased spontaneous excitatory postsynaptic currents, while only ΔFosB inhibition affected the AMPA/NMDA ratio, which was mediated by decreased NMDA receptor current, suggesting complex effects on synaptic inputs to CA1 that may be driven by homeostatic cell-autonomous or network-driven adaptations to the changes in CA1 cell excitability. Because ΔFosB is induced in hippocampus by drugs of abuse, stress, or antidepressant treatment, these results suggest that ΔFosB-driven changes in hippocampal cell excitability may be critical for learning and, in maladaptive states, are key drivers of aberrant hippocampal function in diseases such as addiction and depression.


Subject(s)
CA1 Region, Hippocampal/physiology , Gene Expression/physiology , Learning/physiology , Membrane Potentials/physiology , Proto-Oncogene Proteins c-fos/physiology , Pyramidal Cells/physiology , Animals , CA1 Region, Hippocampal/metabolism , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Proto-Oncogene Proteins c-fos/metabolism , Pyramidal Cells/metabolism
12.
Biol Sex Differ ; 9(1): 32, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30001741

ABSTRACT

BACKGROUND: Our previous study revealed that adult female rats respond differently to trauma than adult males, recapitulating sex differences in symptoms of post-traumatic stress disorder (PTSD) exhibited by women and men. Here, we asked two questions: does the female phenotype depend on (1) social housing condition and/or (2) circulating gonadal hormones? METHODS: For the first study, the effects of single prolonged stress (SPS) were compared for females singly or pair-housed. For the second study, adult male and female rats were gonadectomized or sham-gonadectomized 2 weeks prior to exposure to SPS, with half the gonadectomized rats given testosterone. In addition to the typical measures of the trauma response in rats, acoustic startle response (ASR), and the dexamethasone suppression test (DST), we also used two other measures typically used to assess depressive-like responses, social interaction and sucrose preference. Glucocorticoid receptor (GR) expression in the hypothalamus was also examined. RESULTS: We now report that the distinct trauma response of female rats is not influenced by social housing condition. Moreover, sex differences in the response to SPS based on ASR and DST, replicated in the current study, are independent of adult gonadal hormones. Regardless of hormonal status, traumatized males show a hyper-responsive phenotype whereas traumatized females do not. Moreover, testosterone treatment in adulthood did not masculinize the response to trauma in females. Notably, both sucrose preference and social interaction tests revealed an effect of trauma in females but not in males, with the effects of SPS on sucrose preference dependent on ovarian hormones. Effects of SPS on GR expression in the hypothalamus also depended on gonadal hormones in females. CONCLUSIONS: We propose that the trauma response for female rats is depressive in nature, recapitulating the female bias in PTSD for internalizing symptoms and major depression in contrast to the externalizing symptoms of males. Presumed core markers of PTSD (enhanced ASR and negative feedback control of corticosterone) are apparently relevant only to males and are independent of adult gonadal hormones. Such sex differences in trauma responding are likely determined earlier in life. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience.


Subject(s)
Gonadal Hormones/physiology , Sex Characteristics , Stress, Psychological , Anhedonia , Animals , Brain/metabolism , Dexamethasone/administration & dosage , Ether/administration & dosage , Female , Interpersonal Relations , Male , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Reflex, Startle , Restraint, Physical , Stress, Physiological , Swimming
13.
Biol Sex Differ ; 9(1): 31, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976248

ABSTRACT

BACKGROUND: Post-traumatic stress disorder (PTSD) affects men and women differently. Not only are women twice as likely as men to develop PTSD, they experience different symptoms and comorbidities associated with PTSD. Yet the dearth of preclinical research on females leaves a notable gap in understanding the underlying neuropathology of this sex difference. METHODS: Using two standard measures of PTSD-like responses in rats, the acoustic startle response (ASR) and dexamethasone suppression test (DST), we tested the effects of traumatic stress in adult male and female rats using two rodent models of PTSD, single prolonged stress and predator exposure. We then examined the neural correlates underlying these responses with cFos and glucocorticoid receptor immunohistochemistry in brain regions implicated in the traumatic stress response. RESULTS: We now report that adult male and female rats across two models of PTSD show consistent sex-specific responses that recapitulate fundamental differences of PTSD in men and women. Trauma-exposed males showed the well-established hyper-responsive phenotype of enhanced ASR and exaggerated negative feedback control of the hypothalamic-pituitary-adrenal axis, while the same traumatic event had little effect on these same measures in females. Dramatic sex differences in how trauma affected cFos and glucocorticoid receptor expression in the brain lend further support to the idea that the trauma response of male and female rats is fundamentally different. CONCLUSIONS: Two standard measures, ASR and DST, might suggest that females are resilient to the effects of traumatic stress, but other measures make it clear that females are not resilient, but simply respond differently to trauma. The next important question to answer is why. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience. The divergent effects of trauma in the brains of males and females begin to shed light on the neurobiological underpinnings of these sex differences, paving the way for improved diagnostics and therapeutics that effectively treat both men and women.


Subject(s)
Sex Characteristics , Stress, Psychological , Animals , Brain/metabolism , Dexamethasone/administration & dosage , Disease Models, Animal , Female , Humans , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Reflex, Startle , Stress Disorders, Post-Traumatic , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
14.
Front Psychiatry ; 9: 196, 2018.
Article in English | MEDLINE | ID: mdl-29867615

ABSTRACT

Post-traumatic stress disorder (PTSD) is a common, costly, and often debilitating psychiatric condition. However, the biological mechanisms underlying this disease are still largely unknown or poorly understood. Considerable evidence indicates that PTSD results from dysfunction in highly-conserved brain systems involved in stress, anxiety, fear, and reward. Pre-clinical models of traumatic stress exposure are critical in defining the neurobiological mechanisms of PTSD, which will ultimately aid in the development of new treatments for PTSD. Single prolonged stress (SPS) is a pre-clinical model that displays behavioral, molecular, and physiological alterations that recapitulate many of the same alterations observed in PTSD, illustrating its validity and giving it utility as a model for investigating post-traumatic adaptations and pre-trauma risk and protective factors. In this manuscript, we review the present state of research using the SPS model, with the goals of (1) describing the utility of the SPS model as a tool for investigating post-trauma adaptations, (2) relating findings using the SPS model to findings in patients with PTSD, and (3) indicating research gaps and strategies to address them in order to improve our understanding of the pathophysiology of PTSD.

15.
Rev Neurosci ; 27(6): 559-73, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27180338

ABSTRACT

Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease.


Subject(s)
Hippocampus/physiology , Learning/physiology , Memory Consolidation/physiology , Memory/physiology , Neuronal Plasticity/physiology , Animals , Humans , Neurons/metabolism
16.
Behav Brain Res ; 303: 228-37, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26821287

ABSTRACT

Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex.


Subject(s)
Disease Models, Animal , Fear , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/complications , Animals , Behavior, Animal/drug effects , Conditioning, Classical , Corticosterone/blood , Cues , Extinction, Psychological , Fear/drug effects , Glutamic Acid/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Paroxetine/administration & dosage , Prefrontal Cortex/metabolism , Receptors, Glucocorticoid/metabolism , Restraint, Physical , Selective Serotonin Reuptake Inhibitors/administration & dosage , Stress Disorders, Post-Traumatic/etiology , Swimming
17.
Bio Protoc ; 6(11)2016 Jun 05.
Article in English | MEDLINE | ID: mdl-29119127

ABSTRACT

The temporally dissociated passive avoidance (TDPA) paradigm is a variant of passive avoidance testing, and allows for more sensitive investigation of mild impairments in avoidance learning. Passive avoidance learning measures the latency to enter a "dark" context in which an aversive stimulus (foot shock) has been previously experienced using a light-dark box paradigm. Briefly, the animal is placed into the light side of the box and the time spent to cross into the dark side is measured. After entry into the dark chamber, the animal receives a mild (0.4-1.6 mA) footshock and is removed from the box. After a period of time, typically 24 h (note that this is entirely dependent on whether various levels of memory retention, e.g., short or long, are being measured), the animal is placed back into the box and cross-over latency is measured. Passive avoidance is learned after one trial and results in a robust increase in crossover latency. This behavior requires the association between a normally neutral environment and an aversive stimulus, and is dependent on hippocampal function (Stubley-Weatherly et al., 1996; Impey et al., 1998). TDPA extends this learning across multiple once-daily trials, producing a more graded and malleable latency score, and thus allows a more sensitive evaluation of changes in hippocampal function The task remains dependent on an intact hippocampus (Zhang et al., 2008), and subtle changes in hippocampal gene expression can result in robust alterations in TDPA latency scores (Eagle et al., 2015). We describe here a common method used to assess TDPA learning in mice.

18.
J Neurosci ; 35(40): 13773-83, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446228

ABSTRACT

The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. SIGNIFICANCE STATEMENT: Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal neurons are formed, eliminated, enhanced, and weakened during learning, and we know that some stages of this process involve alterations in the transcription of specific genes. However, the specific transcription factors involved in this process are not fully understood. Here, we demonstrate that the transcription factor ΔFosB is induced in the hippocampus by learning, regulates the shape of hippocampal synapses, and is required for memory formation, opening up a host of new possibilities for hippocampal transcriptional regulation.


Subject(s)
Hippocampus/metabolism , Learning/physiology , Proto-Oncogene Proteins c-fos/metabolism , Animals , Avoidance Learning , Conditioning, Psychological/physiology , Dendritic Spines/metabolism , Dependovirus/genetics , Environment , Exploratory Behavior/physiology , Fear/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Maze Learning/physiology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Spatial Behavior
19.
J Neurochem ; 135(6): 1218-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26146906

ABSTRACT

The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.


Subject(s)
Adenylyl Cyclases/metabolism , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Adenylyl Cyclases/deficiency , Adenylyl Cyclases/genetics , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Metallothionein 3 , Mice, Knockout , Motor Activity/drug effects
20.
Behav Brain Res ; 284: 218-24, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25712697

ABSTRACT

Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague-Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0, 10 or 20 mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, as expected. However, compared to control rats on Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement.


Subject(s)
Cocaine-Related Disorders/physiopathology , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Stress, Psychological/physiopathology , Akathisia, Drug-Induced/physiopathology , Animals , Catheters, Indwelling , Cohort Studies , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Rats, Sprague-Dawley , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...