Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(15): eadg7894, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608012

ABSTRACT

During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.


Subject(s)
Drosophila , Lizards , Animals , Cytoplasm , Germ Cells , RNA, Messenger/genetics , Cell Count
2.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909513

ABSTRACT

During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.

3.
Mol Cell ; 78(5): 941-950.e12, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32464092

ABSTRACT

mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.


Subject(s)
Cytoplasmic Granules/physiology , RNA, Messenger/genetics , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nuclear Proteins/metabolism , Organelles/physiology , RNA/genetics , RNA Transport/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/genetics
4.
Development ; 145(22)2018 11 22.
Article in English | MEDLINE | ID: mdl-30333216

ABSTRACT

Specification and development of Drosophila germ cells depend on molecular determinants within the germ plasm, a specialized cytoplasmic domain at the posterior of the embryo. Localization of numerous mRNAs to the germ plasm occurs by their incorporation, as single-transcript ribonucleoprotein (RNP) particles, into complex RNP granules called polar granules. Incorporation of mRNAs into polar granules is followed by recruitment of additional like transcripts to form discrete homotypic clusters. The cis-acting localization signals that target mRNAs to polar granules and promote homotypic clustering remain largely uncharacterized. Here, we show that the polar granule component (pgc) and germ cell-less (gcl) 3' untranslated regions contain complex localization signals comprising multiple, independently weak and partially functionally redundant localization elements (LEs). We demonstrate that targeting of pgc to polar granules and self-assembly into homotypic clusters are functionally separable processes mediated by distinct classes of LEs. We identify a sequence motif shared by other polar granule mRNAs that contributes to homotypic clustering. Our results suggest that mRNA localization signal complexity may be a feature required by the targeting and self-recruitment mechanism that drives germ plasm mRNA localization.


Subject(s)
Cell Polarity/genetics , Cytoplasmic Granules/metabolism , Drosophila melanogaster/genetics , Regulatory Sequences, Nucleic Acid/genetics , 3' Untranslated Regions/genetics , Animals , Base Pairing , Conserved Sequence/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Intercellular Signaling Peptides and Proteins , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleotide Motifs/genetics , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Curr Biol ; 28(12): 1872-1881.e3, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29861136

ABSTRACT

The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Positive Transcriptional Elongation Factor B/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Animals , Cytoplasmic Granules/metabolism , Drosophila Proteins/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development , Germ Cells/growth & development , Positive Transcriptional Elongation Factor B/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...