Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(5): 110320, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108535

ABSTRACT

The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.


Subject(s)
Cell Proliferation/physiology , Neoplasms/metabolism , Oxygen/metabolism , Pyrroline Carboxylate Reductases/metabolism , Citric Acid Cycle/physiology , Humans , Mitochondria/metabolism , Proline/metabolism , Tumor Microenvironment , delta-1-Pyrroline-5-Carboxylate Reductase
2.
Sci Rep ; 8(1): 14358, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254296

ABSTRACT

Gliomas are highly malignant brain tumours characterised by extensive areas of poor perfusion which subsequently leads to hypoxia and reduced survival. Therapies that address the hypoxic microenvironment are likely to significantly improve patient outcomes. Verteporfin, a benzoporphyrin-like drug, has been suggested to target the Yes-associated protein (YAP). Increased YAP expression and transcriptional activity has been proposed in other tumour types to promote malignant cell survival and thus YAP-inhibitor, verteporfin, may be predicted to impact glioma cell growth and viability. Due to the extensive hypoxic nature of gliomas, we investigated the effect of hypoxia on YAP expression and found that YAP transcription is increased under these conditions. Treatment of both primary and immortalised glioblastoma cell lines with verteporfin resulted in a significant decrease in viability but strikingly only under hypoxic conditions (1% O2). We discovered that cell death occurs through a YAP-independent mechanism, predominately involving binding of free iron and likely through redox cycling, contributes to production of reactive oxygen species. This results in disruption of normal cellular processes and death in cells already under oxidative stress - such as those in hypoxia. We suggest that through repurposing verteporfin, it represents a novel means of treating highly therapy-resistant, hypoxic cells in glioma.


Subject(s)
Glioma/pathology , Iron/metabolism , Reactive Oxygen Species/metabolism , Tumor Hypoxia/drug effects , Verteporfin/pharmacology , Cell Death/drug effects , Cell Line, Tumor , DNA Damage , Humans , Oxidative Stress/drug effects
3.
Cell Rep ; 22(12): 3107-3114, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29562167

ABSTRACT

Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1) in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1), coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA) cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma.


Subject(s)
Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mitochondria/metabolism , Mutation , Proline/biosynthesis , Pyrroline Carboxylate Reductases/metabolism , Cell Line, Tumor , Citric Acid Cycle , Gene Knockdown Techniques , Glutamine/metabolism , Homeostasis , Humans , Mitochondria/enzymology , Mitochondria/genetics , Oligodendroglioma , Oxidation-Reduction , Pyrroline Carboxylate Reductases/genetics , delta-1-Pyrroline-5-Carboxylate Reductase
4.
Nat Commun ; 5: 4701, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25134715

ABSTRACT

The interplay between long-term potentiation and long-term depression (LTD) is thought to be involved in learning and memory formation. One form of LTD expressed in the hippocampus is initiated by the activation of the group 1 metabotropic glutamate receptors (mGluRs). Importantly, mGluRs have been shown to be critical for acquisition of new memories and for reversal learning, processes that are thought to be crucial for cognitive flexibility. Here we provide evidence that MAPK-activated protein kinases 2 and 3 (MK2/3) regulate neuronal spine morphology, synaptic transmission and plasticity. Furthermore, mGluR-LTD is impaired in the hippocampus of MK2/3 double knockout (DKO) mice, an observation that is mirrored by deficits in endocytosis of GluA1 subunits. Consistent with compromised mGluR-LTD, MK2/3 DKO mice have distinctive deficits in hippocampal-dependent spatial reversal learning. These novel findings demonstrate that the MK2/3 cascade plays a strategic role in controlling synaptic plasticity and cognition.


Subject(s)
Cognition/physiology , Intracellular Signaling Peptides and Proteins/physiology , MAP Kinase Signaling System/physiology , Protein Serine-Threonine Kinases/physiology , Protein Transport/physiology , Receptors, Glutamate/physiology , Animals , Endocytosis/physiology , Female , Hippocampus/physiology , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, Knockout , Models, Animal , Neuronal Plasticity/physiology , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Synaptic Transmission/physiology
5.
J Signal Transduct ; 2012: 649079, 2012.
Article in English | MEDLINE | ID: mdl-22792454

ABSTRACT

A significant amount of evidence suggests that the p38-mitogen-activated protein kinase (MAPK) signalling cascade plays a crucial role in synaptic plasticity and in neurodegenerative diseases. In this review we will discuss the cellular localisation and activation of p38 MAPK and the recent advances on the molecular and cellular mechanisms of its substrates: MAPKAPK 2 (MK2) and tau protein. In particular we will focus our attention on the understanding of the p38 MAPK-MK2 and p38 MAPK-tau activation axis in controlling neuroinflammation, actin remodelling and tau hyperphosphorylation, processes that are thought to be involved in normal ageing as well as in neurodegenerative diseases. We will also give some insight into how elucidating the precise role of p38 MAPK-MK2 and p38 MAPK-tau signalling cascades may help to identify novel therapeutic targets to slow down the symptoms observed in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...