Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell Metab ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964323

ABSTRACT

Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.

2.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915523

ABSTRACT

Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights: Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients.

3.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38513237

ABSTRACT

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Subject(s)
Carnitine , Erythrocytes , Hemolysis , Carnitine/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Polymorphism, Single Nucleotide , Erythrocyte Aging , Genome-Wide Association Study , Male , Female , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , Blood Preservation/methods
4.
J Neural Eng ; 21(3)2024 May 21.
Article in English | MEDLINE | ID: mdl-38489845

ABSTRACT

Objective.The advent of surgical reconstruction techniques has enabled the recreation of myoelectric controls sites that were previously lost due to amputation. This advancement is particularly beneficial for individuals with higher-level arm amputations, who were previously constrained to using a single degree of freedom (DoF) myoelectric prostheses due to the limited number of available muscles from which control signals could be extracted. In this study, we explore the use of surgically created electro-neuromuscular constructs to intuitively control multiple bionic joints during daily life with a participant who was implanted with a neuromusculoskeletal prosthetic interface.Approach.We sequentially increased the number of controlled joints, starting at a single DoF allowing to open and close the hand, subsequently adding control of the wrist (2 DoF) and elbow (3 DoF).Main results.We found that the surgically created electro-neuromuscular constructs allow for intuitive simultaneous and proportional control of up to three degrees of freedom using direct control. Extended home-use and the additional bionic joints resulted in improved prosthesis functionality and disability outcomes.Significance.Our findings indicate that electro-neuromuscular constructs can aid in restoring lost functionality and thereby support a person who lost their arm in daily-life tasks.


Subject(s)
Artificial Limbs , Humans , Male , Prosthesis Design , Electromyography/methods , Amputees/rehabilitation , Activities of Daily Living
5.
Article in English | MEDLINE | ID: mdl-38363669

ABSTRACT

Highly impaired individuals stand to benefit greatly from cutting-edge bionic technology, however concurrent functional deficits may complicate the adaptation of such technology. Here, we present a case in which a visually impaired individual with bilateral burn injury amputation was provided with a novel transradial neuromusculoskeletal prosthesis comprising skeletal attachment via osseointegration and implanted electrodes in nerves and muscles for control and sensory feedback. Difficulties maintaining implant hygiene and donning and doffing the prosthesis arose due to his contralateral amputation, ipsilateral eye loss, and contralateral impaired vision necessitating continuous adaptations to the electromechanical interface. Despite these setbacks, the participant still demonstrated improvements in functional outcomes and the ability to control the prosthesis in various limb positions using the implanted electrodes. Our results demonstrate the importance of a multidisciplinary, iterative, and patient-centered approach to making cutting-edge technology accessible to patients with high levels of impairment.


Subject(s)
Artificial Limbs , Bionics , Humans , Prosthesis Implantation , Amputation, Surgical , Diazooxonorleucine
6.
Exp Hematol ; 132: 104176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320689

ABSTRACT

The overall survival rate of patients with T-cell acute lymphoblastic leukemia (T-ALL) is now 90%, although patients with relapsed T-ALL face poor prognosis. The ubiquitin-proteasome system maintains normal protein homeostasis, and aberrations in this pathway are associated with T-ALL. Here we demonstrate the in vitro and in vivo activity of ixazomib, a second-generation orally available, reversible, and selective proteasome inhibitor against pediatric T-ALL cell lines and patient-derived xenografts (PDXs) grown orthotopically in immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb (NSG) mice. Ixazomib was highly potent in vitro, with half-maximal inhibitory concentration (IC50) values in the low nanomolar range. As a monotherapy, ixazomib significantly extended mouse event-free survival of five out of eight T-ALL PDXs in vivo.


Subject(s)
Boron Compounds , Glycine/analogs & derivatives , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Heterografts , Proteasome Inhibitors/pharmacology , Mice, Inbred NOD , T-Lymphocytes , Mice, SCID
7.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38260479

ABSTRACT

Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. Highlights: Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.

8.
Blood ; 143(5): 456-472, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37976448

ABSTRACT

ABSTRACT: In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.


Subject(s)
Blood Donors , Hemolysis , Humans , Kynurenine/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Erythrocytes/metabolism , Metabolomics , Blood Preservation/methods
9.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147558

ABSTRACT

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Subject(s)
Altitude , Blood Group Antigens , Hypoxia , Rh-Hr Blood-Group System , Humans , 2,3-Diphosphoglycerate/metabolism , Erythrocytes/metabolism , Genome-Wide Association Study , Hypoxia/genetics , Hypoxia/metabolism , Polymorphism, Genetic , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/metabolism
10.
bioRxiv ; 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38106022

ABSTRACT

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

11.
Sci Robot ; 8(83): eadf7360, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37820004

ABSTRACT

Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton.


Subject(s)
Quality of Life , Robotics , Humans , Feedback , Bionics , Titanium , Feedback, Sensory/physiology , Electrodes, Implanted
12.
Sci Transl Med ; 15(704): eabq3665, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37437016

ABSTRACT

Remnant muscles in the residual limb after amputation are the most common source of control signals for prosthetic hands, because myoelectric signals can be generated by the user at will. However, for individuals with amputation higher up the arm, such as an above-elbow (transhumeral) amputation, insufficient muscles remain to generate myoelectric signals to enable control of the lost arm and hand joints, thus making intuitive control of wrist and finger prosthetic joints unattainable. We show that severed nerves can be divided along their fascicles and redistributed to concurrently innervate different types of muscle targets, particularly native denervated muscles and nonvascularized free muscle grafts. We engineered these neuromuscular constructs with implanted electrodes that were accessible via a permanent osseointegrated interface, allowing for bidirectional communication with the prosthesis while also providing direct skeletal attachment. We found that the transferred nerves effectively innervated their new targets as shown by a gradual increase in myoelectric signal strength. This allowed for individual flexion and extension of all five fingers of a prosthetic hand by a patient with a transhumeral amputation. Improved prosthetic function in tasks representative of daily life was also observed. This proof-of-concept study indicates that motor neural commands can be increased by creating electro-neuromuscular constructs using distributed nerve transfers to different muscle targets with implanted electrodes, enabling improved control of a limb prosthesis.


Subject(s)
Artificial Limbs , Humans , Electrodes, Implanted , Muscles , Prosthesis Implantation , Hand
13.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37339930

ABSTRACT

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

14.
Pediatr Blood Cancer ; 70(8): e30398, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37140091

ABSTRACT

BACKGROUND: Acute lymphoblastic leukemia (ALL) remains one of the most common causes of cancer-related mortality in children. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases, and aberrations in the PI3K pathway are associated with several hematological malignancies, including ALL. Duvelisib (Copiktra) is an orally available, small molecule dual inhibitor of PI3Kδ and PI3Kγ, that is Food and Drug Administration (FDA) approved for the treatment of relapsed/refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Here, we report the efficacy of duvelisib against a panel of pediatric ALL patient-derived xenografts (PDXs). PROCEDURES: Thirty PDXs were selected for a single mouse trial based on PI3Kδ (PIK3CD) and PI3Kγ (PIK3CG) expression and mutational status. PDXs were grown orthotopically in NSG (NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJAusb) mice, and engraftment was evaluated by enumerating the proportion of human versus mouse CD45+ cells (%huCD45+ ) in the peripheral blood. Treatment commenced when the %huCD45+ reached greater than or equal to 1%, and events were predefined as %huCD45+ greater than or equal to 25% or leukemia-related morbidity. Duvelisib was administered per oral (50 mg/kg, twice daily for 28 days). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: PI3Kδ and PI3Kγ mRNA expression was significantly higher in B-lineage than T-lineage ALL PDXs (p-values <.0001). Duvelisib was well-tolerated and reduced leukemia cells in the peripheral blood in four PDXs, but with only one objective response. There was no obvious relationship between duvelisib efficacy and PI3Kδ or PI3Kγ expression or mutation status, nor was the in vivo response to duvelisib subtype dependent. CONCLUSIONS: Duvelisib demonstrated limited in vivo activity against ALL PDXs.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Animals , Mice , Heterografts , Phosphatidylinositol 3-Kinases , Mice, Inbred NOD , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, B-Cell/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
16.
Sci Rep ; 13(1): 1588, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709376

ABSTRACT

Electrical stimulation of the nerves is known to elicit distinct sensations perceived in distal parts of the body. The stimulation is typically modulated in current with charge-balanced rectangular shapes that, although easily generated by stimulators available on the market, are not able to cover the entire range of somatosensory experiences from daily life. In this regard, we have investigated the effect of electrical neurostimulation with four non-rectangular waveforms in an experiment involving 11 healthy able-bodied subjects. Weiss curves were estimated and rheobase and chronaxie values were obtained showing increases in stimulation time required to elicit sensations for some waveforms. The localization of the sensations reported in the hand also appeared to differ between waveforms, although the total area did not vary significantly. Finally, the possibility of distinguishing different charge- and amplitude-matched stimuli was demonstrated through a two-alternative-forced-choice (2AFC) match-to-sample task, showing the ability of participants to successfully distinguish between waveforms with similar electrical characteristics but different shapes and charge transfer rates. This study provides evidence that, by using different waveforms to stimulate nerves, it is possible to affect not only the required charge to elicit sensations but also the sensation quality and its localization.


Subject(s)
Hand , Sensation , Humans , Electric Stimulation , Sensation/physiology
17.
J Neuroeng Rehabil ; 20(1): 9, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658605

ABSTRACT

BACKGROUND: Myoelectric prostheses are a popular choice for restoring motor capability following the loss of a limb, but they do not provide direct feedback to the user about the movements of the device-in other words, kinesthesia. The outcomes of studies providing artificial sensory feedback are often influenced by the availability of incidental feedback. When subjects are blindfolded and disconnected from the prosthesis, artificial sensory feedback consistently improves control; however, when subjects wear a prosthesis and can see the task, benefits often deteriorate or become inconsistent. We theorize that providing artificial sensory feedback about prosthesis speed, which cannot be precisely estimated via vision, will improve the learning and control of a myoelectric prosthesis. METHODS: In this study, we test a joint-speed feedback system with six transradial amputee subjects to evaluate how it affects myoelectric control and adaptation behavior during a virtual reaching task. RESULTS: Our results showed that joint-speed feedback lowered reaching errors and compensatory movements during steady-state reaches. However, the same feedback provided no improvement when control was perturbed. CONCLUSIONS: These outcomes suggest that the benefit of joint speed feedback may be dependent on the complexity of the myoelectric control and the context of the task.


Subject(s)
Amputees , Artificial Limbs , Humans , Wrist , Elbow , Feedback , Electromyography/methods , Feedback, Sensory , Prosthesis Design
18.
Front Hum Neurosci ; 16: 1030207, 2022.
Article in English | MEDLINE | ID: mdl-36337856

ABSTRACT

As the demand for prosthetic limbs with reliable and multi-functional control increases, recent advances in myoelectric pattern recognition and implanted sensors have proven considerably advantageous. Additionally, sensory feedback from the prosthesis can be achieved via stimulation of the residual nerves, enabling closed-loop control over the prosthesis. However, this stimulation can cause interfering artifacts in the electromyographic (EMG) signals which deteriorate the reliability and function of the prosthesis. Here, we implement two real-time stimulation artifact removal algorithms, Template Subtraction (TS) and ε-Normalized Least Mean Squares (ε-NLMS), and investigate their performance in offline and real-time myoelectric pattern recognition in two transhumeral amputees implanted with nerve cuff and EMG electrodes. We show that both algorithms are capable of significantly improving signal-to-noise ratio (SNR) and offline pattern recognition accuracy of artifact-corrupted EMG signals. Furthermore, both algorithms improved real-time decoding of motor intention during active neurostimulation. Although these outcomes are dependent on the user-specific sensor locations and neurostimulation settings, they nonetheless represent progress toward bi-directional neuromusculoskeletal prostheses capable of multifunction control and simultaneous sensory feedback.

19.
EMBO J ; 41(21): e110393, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36215696

ABSTRACT

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Subject(s)
Lamin Type A , Sirtuins , Aged, 80 and over , Humans , Centenarians , Alleles , Genomic Instability
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4880-4883, 2022 07.
Article in English | MEDLINE | ID: mdl-36086091

ABSTRACT

Implanted electrodes, such as those used for cochlear implants, brain-computer interfaces, and prosthetic limbs, rely on particular electrical conditions for optimal operation. Measurements of electrical impedance can be a diagnostic tool to monitor implanted electrodes for changing conditions arising from glial scarring, encapsulation, and shorted or broken wires. Such measurements provide information about the electrical impedance between a single electrode and its electrical reference, but offer no insights into the overall network of impedances between electrodes. Other solutions generally rely on geometrical assumptions of the arrangement of the electrodes and may not generalize to other electrode networks. Here, we propose a linear algebra-based approach, Cross-Channel Impedance Measurement (CCIM), for measuring a network of impedances between electrodes which all share a common electrical reference. This is accomplished by measuring the voltage response from all electrodes to a known current applied between each electrode and the shared reference, and is agnostic to the number and arrangement of electrodes. The approach is validated using a simulated 8-electrode network, demonstrating direct impedance measurements between electrodes and the reference with 96.6% ±0.2% accuracy, and cross-channel impedance measurements with 93.3% ±0.6% accuracy in a typical system. Subsequent analyses on randomized systems demonstrate the sensitivity of the model to impedance range and measurement noise. Clinical Relevance- CCIM provides a system-agnostic diagnostic test for implanted electrode networks, which may aid in the longitudinal tracking of electrode performance and early identification of electronics failures.


Subject(s)
Cochlear Implantation , Cochlear Implants , Electric Impedance , Electrodes, Implanted , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...