Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Gene Ther ; 29(5): 558-572, 2022 05.
Article in English | MEDLINE | ID: mdl-33864024

ABSTRACT

Hepatoblastoma remains one of the most difficult childhood tumors to treat and is alarmingly understudied. We previously demonstrated that Proviral Insertion site in Maloney murine leukemia virus (PIM) kinases, specifically PIM3, are overexpressed in human hepatoblastoma cells and function to promote tumorigenesis. We aimed to use CRISPR/Cas9 gene editing with dual gRNAs to introduce large inactivating deletions in the PIM3 gene and achieve stable PIM3 knockout in the human hepatoblastoma cell line, HuH6. PIM3 knockout of hepatoblastoma cells led to significantly decreased proliferation, viability, and motility, inhibited cell-cycle progression, decreased tumor growth in a xenograft murine model, and increased animal survival. Analysis of RNA sequencing data revealed that PIM3 knockout downregulated expression of pro-migratory and pro-invasive genes and upregulated expression of genes involved in apoptosis and differentiation. Furthermore, PIM3 knockout decreased hepatoblastoma cancer cell stemness as evidenced by decreased tumorsphere formation, decreased mRNA abundance of stemness markers, and decreased cell surface expression of CD133, a marker of hepatoblastoma stem cell-like cancer cells. Reintroduction of PIM3 into PIM3 knockout cells rescued the malignant phenotype. Successful CRISPR/Cas9 knockout of PIM3 kinase in human hepatoblastoma cells confirmed the role of PIM3 in promoting hepatoblastoma tumorigenesis and cancer cell stemness.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Animals , CRISPR-Cas Systems , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics
2.
Cancers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206917

ABSTRACT

Background: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid malignancy of childhood and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and the known function of STRAP in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS and SK-N-BE(2), using transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres were significantly decreased in the STRAP KO cells. In vivo, STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.

3.
Front Immunol ; 11: 82, 2020.
Article in English | MEDLINE | ID: mdl-32117244

ABSTRACT

B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6- pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6+ progenitors, yielded VH repertoires with biased distal Ighv segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences. Beyond nascent autoreactivity, VH11 productivity, which predominates phosphatidylcholine-specific B-1a B cell receptors (BCRs), was higher for FCRL6+ cells as was pre-BCR formation, which was required for Myc induction and VH11, but not VH12, B-1a development. Thus, FCRL6 revealed unexpected heterogeneity in the developmental origins, regulation, and selection of natural Abs at the pre-BCR checkpoint with implications for autoimmunity and lymphoproliferative disorders.


Subject(s)
Antibodies/immunology , B-Lymphocytes/immunology , Precursor Cells, B-Lymphoid/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Fc/immunology , Animals , Antibodies/metabolism , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylcholines/immunology , Phosphatidylcholines/metabolism , Precursor Cells, B-Lymphoid/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Fc/genetics , Receptors, Fc/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
4.
Transplantation ; 103(8): 1620-1629, 2019 08.
Article in English | MEDLINE | ID: mdl-30951017

ABSTRACT

BACKGROUND: Highly sensitized patients are difficult to match with suitable renal allograft donors and may benefit from xenotransplant trials. We evaluate antibody binding from sensitized patients to pig cells and engineered single allele cells to identify anti-human leukocyte antigen (HLA) antibody cross-species reactivity with swine leukocyte antigen (SLA). These novel testing strategies assess HLA/SLA epitopes and antibody-binding patterns and introduce genetic engineering of SLA epitopes. METHODS: Sensitized patient sera were grouped by calculated panel reactive antibody and luminex single antigen reactivity profile and were tested with cloned GGTA1/CMAH/B4GalNT2 glycan knockout porcine cells. Pig reactivity was assessed by direct flow cytometric crossmatch and studied following elution from pig cells. To study the antigenicity of individual class I HLA and SLA alleles in cells, irrelevant sera binding to lymphoblastoid cells were minimized by CRISPR/Cas9 elimination of endogenous class I and class II HLA, B-cell receptor, and Fc receptor genes. Native HLA, SLA, and mutants of these proteins after mutating 144K to Q were assessed for antibody binding. RESULTS: Those with predominately anti-HLA-B&C antibodies, including Bw6 and Bw4 sensitization, frequently have low pig reactivity. Conversely, antibodies eluted from porcine cells are more commonly anti-HLA-A. Single HLA/SLA expressing engineered cells shows variable antigenicity and mutation of 144K to Q reduces antibody binding for some sensitized patients. CONCLUSIONS: Anti-HLA antibodies cross-react with SLA class I in predictable patterns, which can be identified with histocompatibility strategies, and SLA class I is a possible target of genetic engineering.


Subject(s)
Epitopes/genetics , Histocompatibility Antigens Class I/genetics , Kidney Transplantation , Alleles , Animals , Disease Models, Animal , Histocompatibility Testing , Humans , Swine , Transplantation, Heterologous
5.
Proc Natl Acad Sci U S A ; 116(8): 3229-3238, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718403

ABSTRACT

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.


Subject(s)
CD4 Antigens/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics , Viral Envelope Proteins/genetics , Animals , CD4 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Evolution, Molecular , Genetic Variation/immunology , HIV/genetics , HIV/pathogenicity , Humans , Pan troglodytes/genetics , Pan troglodytes/immunology , Polysaccharides/genetics , Polysaccharides/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Viral Envelope Proteins/immunology
6.
J Virol ; 90(19): 8435-53, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27412591

ABSTRACT

UNLABELLED: Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4(+) T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel "bar-coded" challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE: Nonhuman primate research has relied on only a few infectious molecular clones for a myriad of diverse research projects, including pathogenesis, preclinical vaccine evaluations, transmission, and host-versus-pathogen interactions. With new data suggesting a selected phenotype of the virus that causes infection (i.e., the transmitted/founder virus), we sought to generate and characterize infectious molecular clones from two widely used simian immunodeficiency virus lineages (SIVmac251 and SIVsmE660). Although the exact requirements necessary to be a T/F virus are not yet fully understood, we generated cloned viruses with all the necessary characteristic of a successful T/F virus. The cloned viruses revealed typical acute and set point viral-load dynamics with pathological immune activation, lymphoid tissue damage progressing to significant immunodeficiency, and AIDS-defining clinical endpoints in some animals. These T/F clones represent a new molecular platform for studies requiring authentic T/F viruses.


Subject(s)
Genotype , Phenotype , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , Animals , Macaca mulatta , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/isolation & purification , Virus Replication
7.
J Virol ; 87(10): 5477-92, 2013 May.
Article in English | MEDLINE | ID: mdl-23468494

ABSTRACT

The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10(-5)) and monoclonal antibodies targeting V3 (IC50 < 0.01 µg/ml), CD4-induced (IC50 < 0.1 µg/ml), CD4 binding site (IC50 ~ 1 µg/ml), and V4 (IC50, ~5 µg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (~10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (~20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Animals , Cercocebus atys , Disease Models, Animal , Genetic Variation , Genome, Viral , Inhibitory Concentration 50 , Macaca mulatta , Molecular Sequence Data , Neutralization Tests , Sequence Analysis, DNA , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/isolation & purification
8.
J Virol ; 86(19): 10776-91, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22837215

ABSTRACT

Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km(2). In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.


Subject(s)
Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antibodies/chemistry , CD4-Positive T-Lymphocytes/cytology , Democratic Republic of the Congo , Female , Genetic Variation , Genome , Geography , Humans , Likelihood Functions , Male , Molecular Sequence Data , Pan paniscus , Pan troglodytes , Phylogeny , Rwanda , Sequence Homology, Amino Acid , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , Uganda , Virion
9.
J Clin Invest ; 122(5): 1644-52, 2012 May.
Article in English | MEDLINE | ID: mdl-22505456

ABSTRACT

SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4(+) T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS.


Subject(s)
Lentivirus Infections/virology , Palatine Tonsil/virology , Simian Immunodeficiency Virus/physiology , Viral Matrix Proteins/metabolism , Virus Replication , Adaptation, Biological , Amino Acid Substitution , Animals , Cells, Cultured , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV-1/genetics , HIV-1/pathogenicity , HIV-1/physiology , Host-Pathogen Interactions , Humans , Mutagenesis, Site-Directed , Pan troglodytes , Phylogeny , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , Tissue Culture Techniques
10.
J Acquir Immune Defic Syndr ; 55(1): 14-28, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20616742

ABSTRACT

Type I interferons play an important role in the early defense against viral and other pathogens. These innate responses are also critically important in shaping the subsequent adaptive response. Thus, a more thorough knowledge of innate response types and mechanisms will improve our understanding of pathogenesis and guide the development of new therapeutics. Interferon alpha (IFN-alpha) is used clinically in the treatment of HIV and hepatitis C infections. The majority of IFA-alpha therapy is based on a single IFN-alpha subtype, IFN-alpha2. However, IFN-alpha comprises a family of multiple subtypes. The biologic functions of the distinct subtypes and how they relate to disease are poorly understood. The current study developed the tools to distinguish and measure multiple IFN-alpha subtypes on the mRNA level in rhesus macaques that are used widely as an important animal model for human diseases. We were able to identify and measure nine distinct rhesus IFN-alpha subtypes. Furthermore, we could demonstrate that in response to oral pathogenic SIV infection, several IFN-alpha subtypes are rapidly induced in lymphoid but not at oral and gastrointestinal mucosal surfaces. Although each IFN-alpha subtype was induced at distinct levels, their relative expression patterns were identical in all lymphoid tissues examined.


Subject(s)
Interferon-alpha/biosynthesis , Interferon-alpha/classification , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Animals, Newborn , Gene Expression Profiling , Interferon-alpha/genetics , Intestinal Mucosa/immunology , Lymphoid Tissue/immunology , Macaca mulatta , Mouth Mucosa/immunology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
11.
Vaccine ; 28(6): 1481-92, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19995539

ABSTRACT

In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model.


Subject(s)
Genetic Vectors , Immunization, Secondary/methods , SAIDS Vaccines/immunology , Vaccination/methods , Vaccinia virus/genetics , Vesiculovirus/genetics , Administration, Oral , Animals , Animals, Newborn , HIV Antibodies/blood , Immunoglobulin A/blood , Immunoglobulin G/blood , Infectious Disease Transmission, Vertical/prevention & control , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/adverse effects , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/transmission , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
12.
Virology ; 394(1): 109-18, 2009 Nov 10.
Article in English | MEDLINE | ID: mdl-19748647

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) originated in chimpanzees; yet, several previous studies have shown that primary HIV-1 isolates replicate poorly in chimpanzee CD4+ T lymphocytes in vitro and in vivo. The reasons for this apparent restriction are not understood. Here, we describe a new activation protocol that led to a reproducible expansion and activation of chimpanzee CD4+ T lymphocytes in vitro. Using this protocol, we uncovered species-specific differences in the activation profiles of human and chimpanzee CD4+ T-cells, including HLA-DR and CD62L. Moreover, we found that improved activation facilitated the replication of both CXCR4 and CCR5-tropic HIV-1 in CD4+ T-cell cultures from over 30 different chimpanzees. Thus, the previously reported "replication block" of CCR5-tropic HIV-1 in chimpanzee lymphocytes appears to be due, at least in large part, to suboptimal T-cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/growth & development , Lymphocyte Activation , Animals , Cells, Cultured , HIV Core Protein p24/biosynthesis , HLA-DR Antigens/metabolism , Humans , L-Selectin/metabolism , Pan troglodytes
13.
Exp Cell Res ; 303(2): 388-99, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15652351

ABSTRACT

Muscle A-kinase anchoring protein (mAKAP) is a scaffold protein found principally at the nuclear envelope of striated myocytes. mAKAP maintains a complex consisting of multiple signal transduction molecules including the cAMP-dependent protein kinase A, the ryanodine receptor calcium release channel, phosphodiesterase type 4D3, and protein phosphatase 2A. By an unknown mechanism, a domain containing spectrin repeats is responsible for targeting mAKAP to the nuclear envelope. We now demonstrate that the integral membrane protein nesprin-1alpha serves as a receptor for mAKAP on the nuclear envelope in cardiac myocytes. Nesprin-1alpha is inserted into the nuclear envelope by a conserved, C-terminal, klarsicht-related transmembrane domain and forms homodimers by the binding of an amino-terminal spectrin repeat domain. Through the direct binding of the nesprin-1alpha amino-terminal dimerization domain to the third mAKAP spectrin repeat, nesprin-1alpha targets mAKAP to the nuclear envelope. In turn, overexpression of these spectrin repeat domains in myocytes can displace mAKAP from nesprin-1alpha.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , A Kinase Anchor Proteins , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Substitution , Animals , Base Sequence , Binding, Competitive , COS Cells , Cyclic Nucleotide Phosphodiesterases, Type 4 , DNA, Complementary/genetics , Dimerization , Multiprotein Complexes , Mutagenesis, Site-Directed , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Point Mutation , Protein Structure, Quaternary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Transfection
14.
Mamm Genome ; 15(6): 460-71, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15181538

ABSTRACT

Our primary objective was to discover simplified mouse models corresponding to human obesity linkages. We used the B10.UW- H3(b) we Pax1(un) a(t)/Sn (B10.UW) congenic strain, a subcongenic strain with a reduced UW strain donor region, and their C57BL/10SnJ background strain. The congenic and subcongenic UW strain donor regions are on mouse Chr 2. We measured body length [anal-nasal (AN) length], summed fat depot weights normalized for body weight (Adiposity Index, AI), and percentage of body weight that is lipid. The B10.UW congenic and subcongenic strains have significantly smaller AN lengths ( p < 0.0001) and have a significantly lower AI and percentage of body weight as fat than the background strain ( p < 0.0001). In an F(2) intercross of the congenic and background strains, AN and AI were both linked to the distal half of the donor region with LOD scores greater than 19 and 5, respectively. F(2) haplotypes identified a minimal region for AN linkage of 0.8 megabases (Mb) that is estimated to express four genes in the current Celera mouse genome assembly. We narrowed the most likely location of the obesity gene to 15 Mb whose homologous genes are all located on human Chr 20 in the region surrounding the centromere. Since a previous study identified human obesity linkage peaking near the centromere, then the B10.UW mice may exhibit obesity due to the homologous gene.


Subject(s)
Mice/anatomy & histology , Obesity/genetics , Animals , Biometry , Chromosome Mapping , Female , Male , Mice/genetics , Mice, Congenic , Mice, Inbred Strains , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL