Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 13(10): 1591-1597, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36262388

ABSTRACT

Fragment-based ligand discovery was successfully applied to histone deacetylase HDAC2. In addition to the anticipated hydroxamic acid- and benzamide-based fragment screening hits, a low affinity (∼1 mM) α-amino-amide zinc binding fragment was identified, as well as fragments binding to other regions of the catalytic site. This alternative zinc-binding fragment was further optimized, guided by the structural information from protein-ligand complex X-ray structures, into a sub-µM, brain penetrant, HDAC2 inhibitor (17) capable of modulating histone acetylation levels in vivo.

2.
J Med Chem ; 65(18): 12319-12333, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36101934

ABSTRACT

Fragment-based drug discovery (FBDD) has become an established method for the identification of efficient starting points for drug discovery programs. In recent years, electrophilic fragment screening has garnered increased attention from both academia and industry to identify novel covalent hits for tool compound or drug development against challenging drug targets. Herein, we describe the design and characterization of an acrylamide-focused electrophilic fragment library and screening campaign against extracellular signal-regulated kinase 2 (ERK2) using high-throughput protein crystallography as the primary hit-finding technology. Several fragments were found to have covalently modified the adenosine triphosphate (ATP) binding pocket Cys166 residue. From these hits, 22, a covalent ATP-competitive inhibitor with improved potency (ERK2 IC50 = 7.8 µM), was developed.


Subject(s)
Mitogen-Activated Protein Kinase 1 , Protein Kinase Inhibitors , Acrylamides/chemistry , Adenosine Triphosphate/chemistry , Crystallography, X-Ray , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Protein Kinase Inhibitors/pharmacology , X-Rays
3.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 20(10): 1757-1768, 2021 10.
Article in English | MEDLINE | ID: mdl-34330842

ABSTRACT

The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).


Subject(s)
Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Movement , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775310

ABSTRACT

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Subject(s)
Biocatalysis/drug effects , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Humans , Mice , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
6.
Mol Biosyst ; 12(9): 2867-74, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27385078

ABSTRACT

In-gel activity-based protein profiling (ABPP) offers rapid assessment of the proteome-wide selectivity and target engagement of a chemical tool. Here we demonstrate the use of the inverse electron demand Diels Alder (IEDDA) click reaction for in-gel ABPP by evaluating the selectivity profile and target engagement of a covalent ERK1/2 probe tagged with a trans-cyclooctene group. The chemical probe was shown to bind covalently to Cys166 of ERK2 using protein MS and X-ray crystallography, and displayed submicromolar GI50s in A375 and HCT116 cells. In both cell lines, the probe demonstrated target engagement and a good selectivity profile at low concentrations, which was lost at higher concentrations. The IEDDA cycloaddition enabled fast and quantitative fluorescent tagging for readout with a high background-to-noise ratio and thereby provides a promising alternative to the commonly used copper catalysed alkyne-azide cycloaddition.


Subject(s)
Click Chemistry , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Protein Kinase Inhibitors/chemistry , Proteomics , Cell Line , Drug Discovery/methods , Enzyme Activation/drug effects , Humans , Inhibitory Concentration 50 , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Proteome , Proteomics/methods
7.
Arthritis Rheum ; 58(6): 1664-73, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18512787

ABSTRACT

OBJECTIVE: To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. METHODS: Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. RESULTS: TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. CONCLUSION: An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.


Subject(s)
ADAM Proteins/deficiency , Aggrecans/metabolism , Endopeptidases/metabolism , Procollagen N-Endopeptidase/deficiency , ADAMTS4 Protein , ADAMTS5 Protein , Animals , Blotting, Western , Cartilage/metabolism , Femur Head/metabolism , Mice , Mice, Knockout
8.
J Biol Chem ; 282(52): 37420-8, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-17938173

ABSTRACT

Aggrecan loss from mouse cartilage is predominantly because of ADAMTS-5 activity; however, the relative contribution of other proteolytic and nonproteolytic processes to this loss is not clear. This is the first study to compare aggrecan loss with aggrecan processing in mice with single and double deletions of ADAMTS-4 and -5 activity (Deltacat). Cartilage explants harvested from single and double ADAMTS-4 and -5 Deltacat mice were cultured with or without interleukin (IL)-1alpha or retinoic acid and analyzed for (i) the kinetics of (35)S-labeled aggrecan loss, (ii) the pattern of (35)S-labeled aggrecan fragments released into the media and retained in the matrix, (iii) the pattern of total aggrecan fragments released into the media and retained in the matrix, and (iv) specific cleavage sites within the interglobular and chondroitin sulfate-2 domains. The loss of radiolabeled aggrecan from ADAMTS-4/-5 Deltacat cartilage was less than that from ADAMTS-4, ADAMTS-5, or wild-type cartilage under nonstimulated conditions. IL-1alpha and retinoic acid stimulated radiolabeled aggrecan loss from wild-type and ADAMTS-4 Deltacat cartilage, but there was little effect on ADAMTS-5 cartilage. Proteolysis of aggrecan contributed most to its loss in wild-type, ADAMTS-4, and ADAMTS-5 Deltacat cartilage explants. The pattern of proteolytic processing of aggrecan in these cultures was consistent with that occurring in cartilage pathologies. Retinoic acid, but not IL-1alpha, stimulated radiolabeled aggrecan loss from ADAMTS-4/-5 Deltacat cartilage explants. Even though there was a 300% increase in aggrecan loss from ADAMTS-4/-5 Deltacat cartilage stimulated with retinoic acid, the loss was not associated with aggrecanase cleavage but with the release of predominantly intact aggrecan consistent with the phenotype of the ADAMTS-4/-5 Deltacat mouse. Our results show that chondrocytes have additional mechanism for the turnover of aggrecan and that when proteolytic mechanisms are blocked by ablation of aggrecanase activity, nonproteolytic mechanisms compensate to maintain cartilage homeostasis.


Subject(s)
ADAM Proteins/genetics , ADAM Proteins/physiology , Aggrecans/metabolism , Gene Expression Regulation , Procollagen N-Endopeptidase/genetics , Procollagen N-Endopeptidase/physiology , ADAMTS4 Protein , ADAMTS5 Protein , Animals , Cartilage/metabolism , Catalytic Domain , Gene Deletion , Interleukin-1alpha/metabolism , Mice , Mice, Transgenic , Models, Biological , Time Factors , Tretinoin/metabolism
9.
J Biol Chem ; 282(12): 8632-40, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17255106

ABSTRACT

In the mouse, proteolysis in the aggrecan interglobular domain is driven by ADAMTS-5, and mice deficient in ADAMTS-5 catalytic activity are protected against aggrecan loss and cartilage damage in experimental models of arthritis. Here we show that despite ablation of ADAMTS-5 activity, aggrecanolysis can still occur at two preferred sites in the chondroitin sulfate-rich region. Retinoic acid was more effective than interleukin-1alpha (IL) in promoting cleavage at these sites in ADAMTS-5-deficient cartilage. These results suggest that cleavage at preferred sites in the chondroitin sulfate-rich region is mediated by ADAMTS-4 or an aggrecanase other than ADAMTS-5. Following retinoic acid or IL-1alpha stimulation of cartilage explants, aggrecan fragments in medium and extracts contained SELE(1279) or FREEE(1467) C-terminal sequences. Some SELE(1279) and FREEE(1467) fragments were retained in the cartilage, with intact G1 domains. Other SELE(1279) fragments were released into the medium and co-migrated with the (374)ALGS neoepitope, indicating they were aggrecanase-derived fragments. In contrast none of the FREEE(1467) fragments released into the medium co-migrated with the (374)ALGS neoepitope, suggesting that, despite their size, these fragments were not products of aggrecanase cleavage in the interglobular domain. ADAMTS-5, but not ADAMTS-1, -4, or -9, was up-regulated 8-fold by retinoic acid and 17-fold by IL-1alpha treatment. The data show that whereas ADAMTS-5 is entirely responsible for cleavage in the interglobular domain, cleavage in the chondroitin sulfate-rich region is driven either by ADAMTS-4, which compensates for loss of ADAMTS-5 in this experimental system, or possibly by another aggrecanase. The data show that there are differential aggrecanase activities with preferences for separate regions of the core protein.


Subject(s)
ADAM Proteins/genetics , ADAM Proteins/physiology , Aggrecans/chemistry , Chondroitin Sulfates/chemistry , ADAM Proteins/deficiency , ADAMTS4 Protein , ADAMTS5 Protein , Amino Acid Sequence , Animals , Cartilage/metabolism , Chondrocytes/metabolism , Epitopes/chemistry , Interleukin-1alpha/metabolism , Mice , Molecular Sequence Data , Procollagen N-Endopeptidase/physiology , Protein Binding , Protein Structure, Tertiary
10.
Nature ; 434(7033): 648-52, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-15800625

ABSTRACT

Aggrecan is the major proteoglycan in cartilage, endowing this tissue with the unique capacity to bear load and resist compression. In arthritic cartilage, aggrecan is degraded by one or more 'aggrecanases' from the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteinases. ADAMTS1, 8 and 9 have weak aggrecan-degrading activity. However, they are not thought to be the primary aggrecanases because ADAMTS1 null mice are not protected from experimental arthritis, and cleavage by ADAMTS8 and 9 is highly inefficient. Although ADAMTS4 and 5 are expressed in joint tissues, and are known to be efficient aggrecanases in vitro, the exact contribution of these two enzymes to cartilage pathology is unknown. Here we show that ADAMTS5 is the major aggrecanase in mouse cartilage, both in vitro and in a mouse model of inflammatory arthritis. Our data suggest that ADAMTS5 may be a suitable target for the development of new drugs designed to inhibit cartilage destruction in arthritis, although further work will be required to determine whether ADAMTS5 is also the major aggrecanase in human arthritis.


Subject(s)
Cartilage/enzymology , Endopeptidases/metabolism , Metalloendopeptidases/metabolism , ADAM Proteins , ADAMTS4 Protein , ADAMTS5 Protein , Aggrecans , Animals , Antigens/immunology , Arthritis/enzymology , Arthritis/genetics , Arthritis/immunology , Arthritis/metabolism , Cartilage/drug effects , Cartilage/metabolism , Disease Models, Animal , Endopeptidases/deficiency , Endopeptidases/genetics , Extracellular Matrix Proteins/metabolism , Genotype , Interleukin-1/pharmacology , Lectins, C-Type , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Procollagen N-Endopeptidase/genetics , Procollagen N-Endopeptidase/metabolism , Proteoglycans/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...