Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(5): 772-779, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38230437

ABSTRACT

A highly reproducible electrochemical biosensor, employing a five-stranded four-way junction (5S-4WJ) system through square wave voltammetry, has been successfully validated for the detection of Influenza A virus (InfA). A comprehensive assessment of its linearity, precision, accuracy, and robustness has demonstrated its compliance with FDA standards. Integration with Nucleic Acid-Based Amplification (NASBA) has showcased its selectivity for InfA, enabling the detection of InfA RNA with a standard heater set at 41 °C. This platform offers a straightforward setup well-suited for use at low-resource facilities.


Subject(s)
Biosensing Techniques , Influenza A virus , Influenza A virus/genetics , RNA , Nucleic Acid Amplification Techniques
2.
J Mater Chem B ; 11(35): 8404-8410, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37644782

ABSTRACT

Platinum-group metal (PGM) nanostructures with peroxidase-like catalytic activities (i.e., peroxidase mimics) have been actively developed and applied to in vitro diagnostics in recent years. This article provides our viewpoints on this emerging field from the perspectives of materials science and solid-state chemistry angles. We start with an introduction to PGM peroxidase mimics, their catalytic efficiencies, and insights into catalysis from computational simulations. We then discuss chemical approaches to the synthesis of PGM peroxidase mimics with desired physicochemical parameters and catalytic properties. Then, we elaborate on general methods for functionalizing the surfaces of PGM mimics with bioreceptors. Thereafter, we highlight the applications of PGM mimics in in vitro diagnostics, emphasizing the interactions of PGM mimics with other components of a diagnostic system. We conclude this article with our opinions on the challenges and opportunities in this field.


Subject(s)
Peroxidase , Platinum , Peroxidases , Catalysis , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL