Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Regul Toxicol Pharmacol ; 149: 105598, 2024 May.
Article in English | MEDLINE | ID: mdl-38548044

ABSTRACT

In 2022 the World Health Organization (WHO) published updated 'Toxic Equivalence Factors' (TEFs) for a wide variety of chlorinated dioxins, dibenzofurans and PCBs [collectively referred to as 'dioxin-like chemicals'; DLCs) that interact with the aryl hydrocarbon receptor (AHR)]. Their update used sophisticated statistical analysis of hundreds of published studies that reported estimation of 'Relative Effective Potency' (REP) values for individual DLC congeners. The weighting scheme used in their assessment of each study favored in vivo over in vitro studies and was based largely on rodent studies. In this Commentary, we highlight the large body of published studies that demonstrate large species differences in AHR-ligand activation and provide supporting evidence for our position that the WHO 2022 TEF values intended for use in human risk assessment of DLC mixtures will provide highly misleading overestimates of 'Toxic Equivalent Quotients' (TEQs), because of well-recognized striking differences in AHR ligand affinities between rodent (rat, mouse) and human. The data reviewed in our Commentary support the position that human tissue-derived estimates of REP/TEF values for individual DLC congeners, although uncertain, will provide much better, more realistic estimates of potential activation of the human AHR, when exposure to complex DLC mixtures occurs.


Subject(s)
Receptors, Aryl Hydrocarbon , Species Specificity , Receptors, Aryl Hydrocarbon/metabolism , Animals , Humans , Ligands , Risk Assessment , Dioxins/toxicity , Polychlorinated Biphenyls/toxicity , Rats , Mice
3.
Neurotoxicol Teratol ; 81: 106916, 2020.
Article in English | MEDLINE | ID: mdl-32698050

ABSTRACT

Response variability across the lifespan is an important consideration in toxicology and risk assessment, and the toxic effects of drugs and chemicals during adolescence need more research. This paper summarizes a workshop presented in March 2019, at the Society of Toxicology Annual Meeting in Baltimore, Maryland, that brought together experts in research on drug dependence and toxicity related to nicotine, cannabis, cocaine, and other illicit drugs during adolescence. The goal of the workshop was to address the following issues: (1) Do the effects of adolescent exposure differ from the same exposure in adults? (2) Are there unique biological markers of adolescent brain development? If so, what are they and how reliable are they? (3) Since multiple factors influence substance use disorder, can we disentangle risk factors for abuse and/or toxicity? What are the underlying biological susceptibilities that lead to dependence and neurotoxicity? What are the social, psychosocial and environmental factors that contribute to abuse susceptibilities? This paper reviews drug policy and national trends in adolescent substance use; the public health consequences of e-cigarettes; rat models of adolescent-onset nicotine self-administration and persisting effects of gestational nicotine; sex-dependent effects of delta-9-tetrahydrocannabinol on adolescent brain-behavior relationships; and translational approaches for identifying adolescent risk factors for transition to drug dependence. There is strong evidence that drug exposure prior to adulthood has longer lasting effects on behavior and the underlying neural circuitry. These effects, which are sex-dependent and influenced by stress, may be candidates as predictors of adolescent vulnerability. A major challenge to determining if adolescents have a unique susceptibility to dependence is whether and to what extent the human data allow distinction between the increased risk due to biological immaturity, an underlying biological susceptibility to dependence, or psychosocial and environmental factors for substance dependence. Factors important to consider for development of animal models include the timing and pattern of exposure as it relates to adolescence; age of assessment, and direct comparison with similar effects following exposures to adults to demonstrate that these effects are unique to adolescence. Here we provide a roadmap for further research into what makes adolescent brain development unique.


Subject(s)
Adolescent Behavior/drug effects , Biological Factors/pharmacology , Brain/drug effects , Nicotine/pharmacology , Adolescent , Animals , Electronic Nicotine Delivery Systems , Humans , Substance-Related Disorders/metabolism
5.
JCI Insight ; 2(22)2017 11 16.
Article in English | MEDLINE | ID: mdl-29202460

ABSTRACT

Environmental exposures pose a significant threat to human health. However, it is often difficult to study toxicological mechanisms in human subjects due to ethical concerns. Plant-derived aristolochic acids are among the most potent nephrotoxins and carcinogens discovered to date, yet the mechanism of bioactivation in humans remains poorly understood. Microphysiological systems (organs-on-chips) provide an approach to examining the complex, species-specific toxicological effects of pharmaceutical and environmental chemicals using human cells. We microfluidically linked a kidney-on-a-chip with a liver-on-a-chip to determine the mechanisms of bioactivation and transport of aristolochic acid I (AA-I), an established nephrotoxin and human carcinogen. We demonstrate that human hepatocyte-specific metabolism of AA-I substantially increases its cytotoxicity toward human kidney proximal tubular epithelial cells, including formation of aristolactam adducts and release of kidney injury biomarkers. Hepatic biotransformation of AA-I to a nephrotoxic metabolite involves nitroreduction, followed by sulfate conjugation. Here, we identify, in a human tissue-based system, that the sulfate conjugate of the hepatic NQO1-generated aristolactam product of AA-I (AL-I-NOSO3) is the nephrotoxic form of AA-I. This conjugate can be transported out of liver via MRP membrane transporters and then actively transported into kidney tissue via one or more organic anionic membrane transporters. This integrated microphysiological system provides an ex vivo approach for investigating organ-organ interactions, whereby the metabolism of a drug or other xenobiotic by one tissue may influence its toxicity toward another, and represents an experimental approach for studying chemical toxicity related to environmental and other toxic exposures.


Subject(s)
Aristolochic Acids/toxicity , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Animals , Biomarkers , Biotransformation , Carcinogens/toxicity , Dicumarol/metabolism , Epithelial Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Kidney/injuries , Male , Multidrug Resistance-Associated Proteins/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Nephrons/drug effects , Nephrons/metabolism , Pathology, Molecular/instrumentation , Pathology, Molecular/methods , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Xenobiotics
6.
Curr Protoc Toxicol ; 73: 14.18.1-14.18.28, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777442

ABSTRACT

The liver and the kidney are key toxicity target organs during drug development campaigns, as they typically carry the burden of drug transport and metabolism. Primary hepatocytes and proximal tubule epithelial cells grown in traditional in vitro 2-D culture systems do not maintain transporter and metabolic functions, thus limiting their utility for nonclinical toxicology investigations. We have developed a renal and hepatic microphysiological system (MPS) platform that uses a commercially available MPS device as the core cell culture platform for our methodologies. We describe protocols for isolating and propagating human proximal epithelial cells and how to seed and culture a renal MPS to recapitulate the human proximal tubule. We present two methods to culture hepatocytes within an MPS and the steps required to connect a renal MPS to a liver MPS. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Kidney/drug effects , Liver/drug effects , Toxicity Tests , Cell Culture Techniques , Humans
7.
Toxicol In Vitro ; 40: 170-183, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28089783

ABSTRACT

The liver is the main site for drug and xenobiotics metabolism, including inactivation or bioactivation. In order to improve the predictability of drug safety and efficacy in clinical development, and to facilitate the evaluation of the potential human health effects from exposure to environmental contaminants, there is a critical need to accurately model human organ systems such as the liver in vitro. We are developing a microphysiological system (MPS) based on a new commercial microfluidic platform (Nortis, Inc.) that can utilize primary liver cells from multiple species (e.g., rat and human). Compared to conventional monolayer cell culture, which typically survives for 5-7days or less, primary rat or human hepatocytes in an MPS exhibited higher viability and improved hepatic functions, such as albumin production, expression of hepatocyte marker HNF4α and canaliculi structure, for up to 14days. Additionally, induction of Cytochrome P450 (CYP) 1A and 3A4 in cryopreserved human hepatocytes was observed in the MPS. The acute cytotoxicity of the potent hepatotoxic and hepatocarcinogen, aflatoxin B1, was evaluated in human hepatocytes cultured in an MPS, demonstrating the utility of this model for acute hepatotoxicity assessment. These results indicate that MPS-cultured hepatocytes provide a promising approach for evaluating chemical toxicity in vitro.


Subject(s)
Cell Culture Techniques , Chemical and Drug Induced Liver Injury , Drug Evaluation, Preclinical/methods , Toxicity Tests/methods , Adult , Aflatoxin B1/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Child , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Female , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Middle Aged , Rats , Young Adult
8.
Brain Pathol ; 26(1): 75-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26095919

ABSTRACT

Mortalin, an essential mitochondrial chaperone protein, has previously been implicated in the pathogenesis of a wide array of diseases, including neurodegenerative conditions such as Parkinson's disease (PD) and Alzheimer's disease. Previous reports have consistently described mortalin protein levels to be lower in the brain tissue of patients with neurodegenerative disease, with expression demonstrated to be lower in neurons of post-mortem PD brain specimens. However, to date, mortalin expression has not yet been evaluated in astrocytes of post-mortem brain tissue from either normal or PD subjects. Mortalin expression was demonstrated in mouse primary astrocyte cultures by Western blot and quantitative polymerase chain reaction (PCR). Furthermore, confocal microscopy studies in human post-mortem tissue indicated co-localization of mortalin within astrocytes. Utilizing a quantitative immunofluorescence staining approach, the protein was found to be moderately reduced (∼35%) in this cell type in the substantia nigra pars compacta, but not structures of the corpus striatum, in PD subjects as compared to age-/gender-matched controls. These findings highlight the potential contribution of disrupted astroglial function in the pathogenesis of PD.


Subject(s)
Astrocytes/metabolism , HSP70 Heat-Shock Proteins/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Parkinson Disease/pathology , Aged , Aged, 80 and over , Animals , Animals, Newborn , Case-Control Studies , Cells, Cultured , Female , Glial Fibrillary Acidic Protein/metabolism , HSP70 Heat-Shock Proteins/genetics , Humans , Male , Mice , Middle Aged , RNA, Messenger/metabolism
9.
Environ Health Perspect ; 123(10): 909-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25978799

ABSTRACT

BACKGROUND: The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. RESULTS: SRP has had many successes: discovery of arsenic's toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. CONCLUSION: SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world's worst toxic hot spots are now located in low- and middle-income countries.


Subject(s)
Environmental Health/history , Hazardous Waste Sites/history , Hazardous Waste/analysis , National Institute of Environmental Health Sciences (U.S.)/history , Public Health/history , History, 20th Century , History, 21st Century , Humans , Translational Research, Biomedical , United States
10.
Toxicol Sci ; 143(2): 256-67, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25628403

ABSTRACT

FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology.


Subject(s)
Computer Simulation , In Vitro Techniques , Toxicology/methods , Toxicology/trends , Congresses as Topic , Predictive Value of Tests , Societies, Scientific , United States
11.
Nanotoxicology ; 9(3): 336-43, 2015 May.
Article in English | MEDLINE | ID: mdl-24983898

ABSTRACT

Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent.


Subject(s)
Cadmium Compounds/toxicity , Cytokines/metabolism , Inflammation Mediators/metabolism , Lung/drug effects , Macrophages, Alveolar/drug effects , Quantum Dots , Selenium Compounds/toxicity , Sulfides/toxicity , Zinc Compounds/toxicity , Animals , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lung/cytology , Lung/metabolism , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL
12.
J Nutr ; 144(11): 1850-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25165394

ABSTRACT

BACKGROUND: Isothiocyanates in cruciferous vegetables modulate signaling pathways critical to carcinogenesis, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of inflammation. Glutathione S-transferase (GST) M1 and GSTT1 metabolize isothiocyanates; genetic variants may result in differences in biologic response. OBJECTIVE: The objective of this study was to test whether consumption of cruciferous or cruciferous plus apiaceous vegetables altered serum concentrations of interleukin (IL)-6, IL-8, C-reactive protein (CRP), tumor necrosis factor (TNF) α, and soluble TNF receptor (sTNFR) I and II, and whether this response was GSTM1/GSTT1 genotype dependent. METHODS: In a randomized crossover trial, healthy men (n = 32) and women (n = 31) aged 20-40 y consumed 4 14-d controlled diets: basal (vegetable-free), single-dose cruciferous (1xC) [7 g vegetables/kg body weight (BW)], double-dose cruciferous (2xC) (14 g/kg BW), and cruciferous plus apiaceous (carrot family) (1xC+A) vegetables (7 and 4 g/kg BW, respectively), with a 21-d washout period between each intervention. Urinary isothiocyanate excretion was also evaluated as a marker of systemic isothiocyanate exposure. Fasting morning blood and urine samples were collected on days 0 and 14 and analyzed. RESULTS: IL-6 concentrations were significantly lower on day 14 of the 2xC and 1xC+A diets than with the basal diet [-19% (95% CI: -30%, -0.1%) and -20% (95% CI: -31%, -0.7%), respectively]. IL-8 concentrations were higher after the 1xC+A diet (+16%; 95% CI: 4.2%, 35.2%) than after the basal diet. There were no effects of diet on CRP, TNF-α, or sTNFRI or II. There were significant differences between GSTM1-null/GSTT1+ individuals for several biomarkers in response to 1xC+A compared with basal diets (CRP: -37.8%; 95% CI: -58.0%, -7.4%; IL-6: -48.6%; 95% CI: -49.6%, -12.0%; IL-8: 16.3%; 95% CI: 6.7%, 57.7%) and with the 2xC diet compared with the basal diet (IL-8: -33.2%; 95% CI: -43.0%, -1.4%; sTNFRI: -7.5%; 95% CI: -12.7%, -2.3%). There were no significant reductions in biomarker concentrations in response to diet among GSTM1+/GSTT1+ or GSTM1-null/GSTT1-null individuals. Twenty-four-hour urinary isothiocyanate excretion was not associated with any of the inflammation markers overall; however, IL-6 was inversely associated with total isothiocyanate excretion in GSTM1-null/GSTT1-null individuals (ß = -0.12; 95% CI: -0.19, -0.05). CONCLUSIONS: In this young, healthy population, consumption of cruciferous and apiaceous vegetables reduced circulating IL-6; however, results for other biomarkers of inflammation were not consistent.


Subject(s)
Brassicaceae , Diet , Inflammation/metabolism , Vegetables , Adult , Biomarkers , Cross-Over Studies , Female , Gene Expression Regulation , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Inflammation/blood , Male , Young Adult
13.
Methods Mol Biol ; 1199: 155-63, 2014.
Article in English | MEDLINE | ID: mdl-25103807

ABSTRACT

Advances in nanotechnology have produced a new class of fluorescent nanoparticles known as quantum dots (Qdots). Compared with organic dyes and fluorescent proteins, Qdots offer several unique advantages in terms of spectral range, brightness, and photostability. Relative to other imaging modalities, optical imaging with Qdots is highly sensitive, quantitative, and capable of multiplexing. Thus, Qdots are being developed for a wide range of applications, including biomedical imaging. Qdot production has also emerged in a number of industrial applications, such as optoelectronic devices and photovoltaic cells. This widespread development and use of Qdots has outpaced research progress on their potential cytotoxicity, engendering major concerns surrounding occupational, environmental, and diagnostic exposures. Given the extensive physicochemical heterogeneity of Qdots (size, charge, chemical composition, solubility, etc.), high-throughput in vitro cytotoxicity assays represent a feasible means of determining effects of multiple variables and can inform design of lower-throughput in vivo cytotoxicity studies. Here, we describe the application of two commonly used assays, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), for detection of Qdot-induced cytotoxicity.


Subject(s)
Quantum Dots/toxicity , Toxicity Tests/methods , Cell Line , Cell Proliferation/drug effects , L-Lactate Dehydrogenase/metabolism
14.
Cancer Prev Res (Phila) ; 7(7): 653-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24934619

ABSTRACT

In this issue, Johnson and colleagues provide a remarkable demonstration of the potential for "chemoprevention" of cancer from mutagenic chemicals. The authors demonstrated complete protection of rats from a carcinogenic treatment regimen with the potent dietary mutagen and hepatocarcinogen, aflatoxin B1 (AFB) by pretreatment with a synthetic oleanane triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im). This study is notable for two reasons: (i) Activation of the Nrf2/Keap1/ARE "antioxidant response" pathway by CDDO-Im conferred complete protection against AFB-induced hepatocellular carcinomas in the Fisher F344 rat (a strain frequently used in life-time carcinogenicity bioassays), and (ii) extensive AFB-DNA adduct formation was seen in all animals at early time points, including those treated with CDDO-Im, albeit at lower levels (∼30% of the untreated animals), suggesting a strong divergence in the association between early DNA-damaging events, and tumor formation later in life. The authors suggest that this provides compelling experimental support for the concept of carcinogenic "thresholds" for mutagenic chemicals, because the treatment reduced persistent, mutagenic adducts (AFB-FAPyr adducts) only by 70%, but nearly completely eliminated tumors after approximately 2 years and preneoplastic lesions 6 weeks after the last dose of AFB.


Subject(s)
Aflatoxin B1/toxicity , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/prevention & control , DNA Adducts/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glutathione S-Transferase pi/metabolism , Imidazoles/therapeutic use , Liver Neoplasms, Experimental/prevention & control , Oleanolic Acid/analogs & derivatives , Aflatoxin B1/metabolism , Animals , Male , Oleanolic Acid/therapeutic use
15.
PLoS One ; 8(5): e64165, 2013.
Article in English | MEDLINE | ID: mdl-23724032

ABSTRACT

Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/- and Gclm -/- mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/-) mice, whereas Gclm null (-/-) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/- mice, but not from Gclm -/- mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm -/- mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm -/- mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.


Subject(s)
Glutamate-Cysteine Ligase/genetics , Pneumonia/etiology , Polymers/chemistry , Quantum Dots/chemistry , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cadmium Compounds/chemistry , Cadmium Compounds/metabolism , Cadmium Compounds/toxicity , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Enzyme Activation , Glutathione/biosynthesis , Inflammation Mediators/immunology , Keratinocytes/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Neutrophil Infiltration/immunology , Peroxidase/metabolism , Polymers/toxicity , Quantum Dots/toxicity , RNA, Messenger/genetics , Selenium Compounds/chemistry , Selenium Compounds/metabolism , Selenium Compounds/toxicity , Stress, Physiological/genetics , Stress, Physiological/immunology , Tumor Necrosis Factor-alpha/metabolism , Zinc Sulfate/chemistry
16.
Stem Cell Res Ther ; 4 Suppl 1: S17, 2013.
Article in English | MEDLINE | ID: mdl-24564863

ABSTRACT

Kidney disease is a public health problem that affects more than 20 million people in the US adult population, yet little is understood about the impact of kidney disease on drug disposition. Consequently there is a critical need to be able to model the human kidney and other organ systems, to improve our understanding of drug efficacy, safety, and toxicity, especially during drug development. The kidneys in general, and the proximal tubule specifically, play a central role in the elimination of xenobiotics. With recent advances in molecular investigation, considerable information has been gathered regarding the substrate profiles of the individual transporters expressed in the proximal tubule. However, we have little knowledge of how these transporters coupled with intracellular enzymes and influenced by metabolic pathways form an efficient secretory and reabsorptive mechanism in the renal tubule. Proximal tubular secretion and reabsorption of xenobiotics is critically dependent on interactions with peritubular capillaries and the interstitium. We plan to robustly model the human kidney tubule interstitium, utilizing an ex vivo three-dimensional modular microphysiological system with human kidney-derived cells. The microphysiological system should accurately reflect human physiology, be usable to predict renal handling of xenobiotics, and should assess mechanisms of kidney injury, and the biological response to injury, from endogenous and exogenous intoxicants.


Subject(s)
Kidney Tubules/cytology , Cell Culture Techniques , Cell Survival/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Pericytes/cytology , Pericytes/drug effects , Xenobiotics/toxicity
17.
Nanotoxicology ; 7(2): 181-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22264017

ABSTRACT

Because of their unique optical properties, quantum dots (QDs) have become a preferred system for ultrasensitive detection and imaging. However, since QDs commonly contain Cd and other heavy metals, concerns have been raised regarding their toxicity. QDs are thus commonly synthesised with a ZnS cap structure and/or coated with polymeric stabilisers. We recently synthesised amphiphilic polymer-coated tri-n-octylphosphine oxide - poly(maleic anhydride-alt-1-tetradecene (TOPO-PMAT) QDs, which are highly stable in aqueous environments. The effects of these QDs on viability and stress response in five cell lines of mouse and human origins are reported here. Human and mouse macrophages and human kidney cells readily internalised these QDs, resulting in modest toxicity. TOPO-PMAT QD exposure was highly correlated with the induction of the stress response protein heme oxygenase-1 (HMOX1). Other stress biomarkers (glutamate cysteine ligase modifier subunit, NAD(P)H, necrosis) were only moderately affected. HMOX1 may thus be a useful biomarker of TOPO-QDOT QD exposure across cell types and species.


Subject(s)
Cadmium Compounds/toxicity , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Polymers/toxicity , Quantum Dots , Selenium Compounds/toxicity , Sulfides/toxicity , Surface-Active Agents/toxicity , Zinc Compounds/toxicity , Animals , Biomarkers/metabolism , Blotting, Western , Cadmium Compounds/metabolism , Cell Line , Cell Survival/drug effects , Cluster Analysis , Dose-Response Relationship, Drug , Humans , Lipid Peroxidation/drug effects , Mice , Microscopy, Confocal , Necrosis , Organophosphorus Compounds/toxicity , Oxidative Stress/drug effects , Polymers/metabolism , Selenium Compounds/metabolism , Sulfhydryl Compounds/metabolism , Sulfides/metabolism , Surface-Active Agents/metabolism , Zinc Compounds/metabolism
18.
Toxicol Appl Pharmacol ; 266(1): 122-31, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23153560

ABSTRACT

Sulforaphane (SFN), is an effective in vitro antagonist of ligand activation of the human pregnane and xenobiotic receptor (PXR). PXR mediated CYP3A4 up-regulation is implicated in adverse drug-drug interactions making identification of small molecule antagonists a desirable therapeutic goal. SFN is not an antagonist to mouse or rat PXR in vitro; thus, normal rodent species are not suitable as in vivo models for human response. To evaluate whether SFN can effectively antagonize ligand activation of human PXR in vivo, a three-armed, randomized, crossover trial was conducted with 24 healthy adults. The potent PXR ligand - rifampicin (300mg/d) was given alone for 7days in arm 1, or in daily combination with 450µmol SFN (Broccoli Sprout extract) in arm 2; SFN was given alone in arm 3. Midazolam as an in vivo phenotype marker of CYP3A was administered before and after each treatment arm. Rifampicin alone decreased midazolam AUC by 70%, indicative of the expected increase in CYP3A4 activity. Co-treatment with SFN did not reduce CYP3A4 induction. Treatment with SFN alone also did not affect CYP3A4 activity in the cohort as a whole, although in the subset with the highest basal CYP3A4 activity there was a statistically significant increase in midazolam AUC (i.e., decrease in CYP3A4 activity). A parallel study in humanized PXR mice yielded similar results. The parallel effects of SFN between humanized PXR mice and human subjects demonstrate the predictive value of humanized mouse models in situations where species differences in ligand-receptor interactions preclude the use of a native mouse model for studying human ligand-receptor pharmacology.


Subject(s)
Brassica , Plant Extracts/pharmacology , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/metabolism , Thiocyanates/pharmacology , Adult , Animals , Cross-Over Studies , Female , Humans , Isothiocyanates , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plant Extracts/isolation & purification , Pregnane X Receptor , Sulfoxides , Thiocyanates/isolation & purification , Treatment Outcome , Young Adult
19.
J Bone Miner Res ; 28(5): 1101-16, 2013 May.
Article in English | MEDLINE | ID: mdl-23212742

ABSTRACT

Long-term therapy with certain drugs, especially cytochrome P450 (P450; CYP)-inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4, and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25-hydroxyvitamin D3 (25OHD3) were evaluated after exposure to P450-inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine, and rifampin significantly increased the levels of CYP3A4, but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4ß,25(OH)2D3. This inductive effect was blocked by the addition of 6',7'-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1, or CYP27B1 expression. 24R,25(OH)2 D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4ß,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (-10%; p = 0.03), and a nonsignificant change in 24R,25(OH)2D3 (-8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4ß,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4ß-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia.


Subject(s)
Calcifediol/metabolism , Cytochrome P-450 CYP3A/biosynthesis , Liver/metabolism , Osteomalacia/chemically induced , Adult , Cell Line , Enzyme Induction , Female , Humans , Hydroxylation , Male , Middle Aged , Osteomalacia/enzymology , Osteomalacia/metabolism , Rifampin/pharmacology , Young Adult
20.
ACS Nano ; 6(11): 9475-84, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23039050

ABSTRACT

Semiconductor quantum dots (Qdots) are a promising new technology with benefits in the areas of medical diagnostics and therapeutics. Qdots generally consist of a semiconductor core, capping shell, and surface coating. The semiconductor core of Qdots is often composed of group II and VI metals (e.g., Cd, Se, Te, Hg) that are known to have toxic properties. Various surface coatings have been shown to stabilize Qdots and thus shield cells from the toxic properties of their core elements. In this study, HepG2 cells and primary human liver (PHL) cells were chosen as in vitro tissue culture models of human liver to examine the possible adverse effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) copolymer (TOPO-PMAT)-coated CdSe/ZnS Qdots (TOPO-PMAT Qdots). The TOPO-PMAT coating is desirable for increasing aqueous solubility and ease of conjugation to targeting moieties (e.g., aptamers and peptides). HepG2 cells avidly incorporated these TOPO-PMAT Qdots into subcellular vesicles. However, PHL cells did not efficiently take up TOPO-PMAT Qdots, but nonparenchymal cells did (especially Kupffer cells). No acute toxicity or morphological changes were noted in either system at the exposure levels used (up to 40 nM). However, cellular stress markers and pro-inflammatory cytokines/chemokines were increased in the PHL cell cultures, suggesting that TOPO-PMAT Qdots are not likely to cause acute cytotoxicity in the liver but may elicit inflammation/hepatitis, demonstrating the importance of relevant preclinical safety models. Thus, further in vivo studies are warranted to ensure that TOPO-PMAT-coated Qdots used in biomedical applications do not induce inflammatory responses as a consequence of hepatic uptake.


Subject(s)
Cadmium Compounds/toxicity , Coated Materials, Biocompatible/toxicity , Hepatocytes/drug effects , Polymers/toxicity , Quantum Dots , Selenium Compounds/toxicity , Sulfides/toxicity , Zinc Compounds/toxicity , Cell Line , Cell Survival/drug effects , Hepatocytes/cytology , Hepatocytes/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Organophosphorus Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL