Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Chem Rev ; 123(21): 12037-12038, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37936399
2.
J Am Chem Soc ; 145(24): 13215-13222, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289656

ABSTRACT

Vibrational strong coupling (VSC) occurs when molecular vibrations hybridize with the modes of an optical cavity, an interaction mediated by vacuum fluctuations. VSC has been shown to influence the rates and selectivity of chemical reactions. However, a clear understanding of the mechanism at play remains elusive. Here, we show that VSC affects the polarity of solvents, which is a parameter well-known to influence reactivity. The strong solvatochromic response of Reichardt's dye (RD) was used to quantify the polarity of a series of alcohol solvents at visible wavelengths. We observed that, by simultaneously coupling the OH and CH vibrational bands of the alcohols, the absorption maximum of Reichardt's dye redshifted by up to ∼15.1 nm, corresponding to an energy change of 5.1 kJ·mol-1. With aliphatic alcohols, the magnitude of the absorption change of RD was observed to be related to the length of the alkyl chain, the molecular surface area, and the polarizability, indicating that dispersion forces are impacted by strong coupling. Therefore, we propose that dispersion interactions, which themselves originate from vacuum fluctuations, are impacted under strong coupling and are therefore critical to understanding how VSC influences chemistry.

3.
Angew Chem Int Ed Engl ; 62(6): e202212724, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36426601

ABSTRACT

We show that chiral Frenkel excitons yield intense circularly polarized luminescence with an intrinsic dissymmetry factor in emission glum as high as 0.08. This outstanding value is measured through thin films of cyanine J-aggregates that form twisted bundles. Our measurements, obtained by a Mueller polarization analysis, are artifact-free and reveal a quasi-perfect correlation between the dissymmetry factors in absorption, gabs , and in emission glum . We interpret the bisignate dissymmetry factors as the signature of a strong coupling between chiral Frenkel excitons longitudinally excited along the bundles. We further resolve by polarimetry analysis the split in energy between the excited states with a Davydov splitting as small as 28 meV. We finally show the anti-Kasha nature of the chiral emission bands with opposite optical chirality. These mirror-imaged emissive chiroptical features emerge from the structural rigidity of the bundles that preserves the ground- and excited-state chirality.

4.
Opt Express ; 30(19): 34984-34997, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242501

ABSTRACT

The scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.

5.
J Phys Chem Lett ; 13(40): 9309-9315, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36178160

ABSTRACT

Ultrafast molecular dynamics in fluids is of great importance in many biological and chemical systems. Although such dynamics in bulk liquids has been explored by various methods, experimental tools that unveil the dynamics of solvated solutes are limited. In this work, we have developed resonant optical Kerr effect spectroscopy (ROKE), which is an analogue of optical Kerr effect spectroscopy that measures the reorientational relaxation of a dilute solute in solution. By adjusting the pump and probe wavelengths at the resonant absorption band of a solute, the time response of the solute was distinguished easily from the negligible signal of the solvent. The heterodyne detection of ROKE enables the determination of reorientational relaxation time constants with an accuracy of 2.6%. The signal-to-noise ratio was high enough (average ∼26.7) to obtain an adequate signal from even a 10 µM solution. Thus, ROKE is a powerful tool to study solute dynamics with high sensitivity in a broad range of applications.


Subject(s)
Solutions , Solutions/chemistry , Solvents/chemistry , Spectrum Analysis
6.
ACS Photonics ; 9(3): 778-783, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35308406

ABSTRACT

We design, in a most simple way, Fabry-Perot cavities with longitudinal chiral modes by sandwiching between two smooth metallic silver mirrors a layer of polystyrene made planar chiral by torsional shear stress. We demonstrate that the helicity-preserving features of our cavities stem from a spin-orbit coupling mechanism seeded inside the cavities by the specific chiroptical features of planar chirality. Planar chirality gives rise to an extrinsic source of three-dimensional chirality under oblique illumination that endows the cavities with enantiomorphic signatures measured experimentally and simulated with excellent agreement. The simplicity of our scheme is particularly promising in the context of chiral cavity QED and polaritonic asymmetric chemistry.

7.
J Phys Chem Lett ; 13(5): 1209-1214, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35089035

ABSTRACT

The chemical and physical properties of molecules and materials are known to be modified significantly under vibrational strong coupling (VSC). To gain insight into the effects of VSC on π-π interactions involved in molecular self-assembly, themselves sensitive to vacuum electromagnetic field fluctuations, the aggregation of two structural isomers (linear and V-shaped) of phenyleneethynylene under cooperative coupling was investigated. By coupling the aromatic C═C stretching band, the assembly of one of the molecules results in the formation of spheres as opposed to flakes under normal conditions. As a consequence, the electronic absorption and emission spectra of the self-assembled structures are also modified significantly. The VSC-induced changes depend not only on the type of vibration that is coupled but also on the symmetry of the phenyleneethynylene isomer. These results confirm that VSC can be used to drive molecular assemblies to new structural minima and thereby provide a new tool for supramolecular chemistry.

8.
J Am Chem Soc ; 143(41): 16877-16889, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34609858

ABSTRACT

Over the past decade, the possibility of manipulating chemistry and material properties using hybrid light-matter states has stimulated considerable interest. Hybrid light-matter states can be generated by placing molecules in an optical cavity that is resonant with a molecular transition. Importantly, the hybridization occurs even in the dark because the coupling process involves the zero-point fluctuations of the optical mode (a.k.a. vacuum field) and the molecular transition. In other words, unlike photochemistry, no real photon is required to induce this strong coupling phenomenon. Strong coupling in general, but vibrational strong coupling (VSC) in particular, offers exciting possibilities for molecular and, more generally, material science. Not only is it a new tool to control chemical reactivity, but it also gives insight into which vibrations are involved in a reaction. This Perspective gives the underlying fundamentals of light-matter strong coupling, including a mini-tutorial on the practical issues to achieve VSC. Recent advancements in "vibro-polaritonic chemistry" and related topics are presented along with the challenges for this exciting new field.

9.
Angew Chem Int Ed Engl ; 60(36): 19665-19670, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34255910

ABSTRACT

Strong coupling plays a significant role in influencing chemical reactions and tuning material properties by modifying the energy landscapes of the systems. Here we study the effect of vibrational strong coupling (VSC) on supramolecular organization. For this purpose, a rigid-rod conjugated polymer known to form gels was strongly coupled together with its solvent in a microfluidic IR Fabry-Perot cavity. Absorption and fluorescence studies indicate a large modification of the self-assembly under such cooperative VSC. Electron microscopy confirms that in this case, the supramolecular morphology is totally different from that observed in the absence of strong coupling. In addition, the self-assembly kinetics are altered and depend on the solvent vibration under VSC. The results are compared to kinetic isotope effects on the self-assembly to help clarify the role of different parameters under strong coupling. These findings indicate that VSC is a valuable new tool for controlling supramolecular assemblies with broad implications for the molecular and material sciences.

10.
Science ; 373(6551)2021 07 09.
Article in English | MEDLINE | ID: mdl-34244383

ABSTRACT

Over the past decade, there has been a surge of interest in the ability of hybrid light-matter states to control the properties of matter and chemical reactivity. Such hybrid states can be generated by simply placing a material in the spatially confined electromagnetic field of an optical resonator, such as that provided by two parallel mirrors. This occurs even in the dark because it is electromagnetic fluctuations of the cavity (the vacuum field) that strongly couple with the material. Experimental and theoretical studies have shown that the mere presence of these hybrid states can enhance properties such as transport, magnetism, and superconductivity and modify (bio)chemical reactivity. This emerging field is highly multidisciplinary, and much of its potential has yet to be explored.

11.
Nano Lett ; 21(10): 4365-4370, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33945283

ABSTRACT

Light-Matter strong coupling in the vacuum limit has been shown, over the past decade, to enhance material properties. Oxide nanoparticles are known to exhibit weak ferromagnetism due to vacancies in the lattice. Here we report the 700-fold enhancement of the ferromagnetism of YBa2Cu3O7-x nanoparticles under a cooperative strong coupling at room temperature. The magnetic moment reaches 0.90 µB/mol, and with such a high value, it competes with YBa2Cu3O7-x superconductivity at low temperatures. This strong ferromagnetism at room temperature suggest that strong coupling is a new tool for the development of next-generation magnetic and spintronic nanodevices.

12.
Angew Chem Int Ed Engl ; 60(11): 5712-5717, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33305864

ABSTRACT

Vibrational strong coupling (VSC) has recently been shown to change the rate and chemoselectivity of ground-state chemical reactions via the formation of light-matter hybrid polaritonic states. However, the observation that vibrational-mode symmetry has a large influence on charge-transfer reactions under VSC suggests that symmetry considerations could be used to control other types of chemical selectivity through VSC. Here, we show that VSC influences the stereoselectivity of the thermal electrocyclic ring opening of a cyclobutene derivative, a reaction which follows the Woodward-Hoffmann rules. The direction of the change in stereoselectivity depends on the vibrational mode that is coupled, as do changes in rate and reaction thermodynamics. These results on pericyclic reactions confirm that symmetry plays a key role in chemistry under VSC.

13.
ACS Nano ; 14(8): 10219-10225, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32806034

ABSTRACT

During the past decade, it has been shown that light-matter strong coupling of materials can lead to modified and often improved properties which has stimulated considerable interest. While charge transport can be enhanced in n-type organic semiconductors by coupling the electronic transition and thereby splitting the conduction band into polaritonic states, it is not clear whether the same process can also influence carrier transport in the valence band of p-type semiconductors. Here we demonstrate that it is indeed possible to enhance both the conductivity and photoconductivity of a p-type semiconductor rr-P3HT that is ultrastrongly coupled to plasmonic modes. It is due to the hybrid light-matter character of the virtual polaritonic excitations affecting the linear response of the material. Furthermore, in addition to being enhanced, the photoconductivity of rr-P3HT shows a modified spectral response due to the formation of the hybrid polaritonic states. This illustrates the potential of engineering the vacuum electromagnetic environment to improve the optoelectronic properties of organic materials.

14.
Angew Chem Int Ed Engl ; 59(26): 10436-10440, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32220038

ABSTRACT

It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene-I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.

15.
Angew Chem Int Ed Engl ; 58(43): 15324-15328, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31449707

ABSTRACT

Vibrational strong coupling (VSC) has recently emerged as a completely new tool for influencing chemical reactivity. It harnesses electromagnetic vacuum fluctuations through the creation of hybrid states of light and matter, called polaritonic states, in an optical cavity resonant to a molecular absorption band. Here, we investigate the effect of vibrational strong coupling of water on the enzymatic activity of pepsin, where a water molecule is directly involved in the enzyme's chemical mechanism. We observe an approximately 4.5-fold decrease of the apparent second-order rate constant kcat /Km when coupling the water stretching vibration, whereas no effect was detected for the strong coupling of the bending vibration. The possibility of modifying enzymatic activity by coupling water demonstrates the potential of VSC as a new tool to study biochemical reactivity.

16.
Nanoscale ; 11(41): 19315-19318, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31423510

ABSTRACT

Plasmonic coupling is a fascinating phenomenon occurring between neighboring metal nanostructures. We report a straightforward approach to study such process macroscopically by fabricating 2D networks of gold nanoparticles, interconnected with responsive hygroscopic organic linkers. By controlling the humidity we tune the interparticle distance to reversibly trigger plasmonic coupling collectively over several millimeters.

17.
Angew Chem Int Ed Engl ; 58(31): 10635-10638, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31189028

ABSTRACT

Here, we report the catalytic effect of vibrational strong coupling (VSC) on the solvolysis of para-nitrophenyl acetate (PNPA), which increases the reaction rate by an order of magnitude. This is observed when the microfluidic Fabry-Perot cavity in which the VSC is generated is tuned to the C=O vibrational stretching mode of both the reactant and solvent molecules. Thermodynamic experiments confirm the catalytic nature of VSC in the system. The change in the reaction rate follows an exponential relation with respect to the coupling strength of the solvent, indicating a cooperative effect between the solvent molecules and the reactant. Furthermore, the study of the solvent kinetic isotope effect clearly shows that the vibrational overlap of the C=O vibrational bands of the reactant and the strongly coupled solvent molecules is critical for the catalysis in this reaction. The combination of cooperative effects and cavity catalysis confirms the potential of VSC as a new frontier in chemistry.

18.
Nano Lett ; 18(7): 4396-4402, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29902018

ABSTRACT

π-conjugated organic microcrystals often act as optical resonators in which the generated photons in the crystal are confined by the reflection at the crystalline facets and interfere to gain lasing action. Here, we fabricate microcrystals from a mixture of carbon-bridged oligo- para-phenylenevinylenes (COPVs) with energy-donor (D) and energy-acceptor (A) characters. Upon weak excitation of the single D-A co-crystal, Förster resonance energy transfer (FRET) takes place, exhibiting spontaneous emission from A. In contrast, upon strong pumping, stimulated emission occurs before FRET, generating lasing action from D. Lasing occurs with single- and dual-vibronic levels, and the lasing wavelength can be modulated by the doping amount of A. Time-resolved spectroscopic studies reveal that the rate constant of lasing is more than 20 times greater than that of FRET. Furthermore, microcrystals, vertically grown on a Ag-coated substrate, reduce the lasing threshold by one-fourth. This study proposes possible directions toward organic solid FRET lasers with microcrystalline resonators.

19.
Chemistry ; 23(72): 18166-18170, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29155469

ABSTRACT

We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified.

20.
Angew Chem Int Ed Engl ; 56(31): 9034-9038, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28598527

ABSTRACT

Light-matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non-radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly coupled to a cavity. The transient dynamics and the static spectra show an energy transfer efficiency approaching 37 % for donor-acceptor distances ≥100 nm. In such systems, the energy transfer process becomes independent of distance as long as the coupling strength is maintained. This is consistent with the entangled and delocalized nature of the polaritonic states.

SELECTION OF CITATIONS
SEARCH DETAIL
...