Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Chem Biol ; 3(6): 748-764, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35755193

ABSTRACT

Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application. To address this need, we developed a novel library of pH-sensitive probes based on the highly photostable and water-soluble fluorescent molecule, Rhodamine 6G. We demonstrate versatility in terms of both pH sensitivity (i.e., pK a) and chemical functionality, allowing conjugation to small molecules, proteins, nanoparticles, and regenerative biomaterial scaffold matrices. Furthermore, we show preserved pH-sensitive fluorescence following a variety of forms of covalent functionalization and demonstrate three potential applications, both in vitro and in vivo, for intracellular and extracellular pH sensing. Finally, we develop a computation approach for predicting the pH sensitivity of R6G derivatives, which could be used to expand our library and generate probes with novel properties.

2.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35562890

ABSTRACT

Tissue engineering aims to repair, restore, and/or replace tissues in the human body as an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold pore size influences vascularization and extracellular matrix composition both in vivo and in vitro, to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which have markedly different tissue properties despite similar multipotent stem cell populations. To rationally design biomaterials for specific cell and tissue fate specification, it is critical to understand the molecular processes governed by cell-biomaterial interactions, which guide cell fate specification. Building on our previous work, in this report we investigated the hypothesis that scaffold pore curvature, the direct consequence of pore size, modulates the differentiation trajectory of mesenchymal stem cells (MSCs) through alterations in the cytoskeleton. First, we demonstrated that sufficiently small pores facilitate cell clustering in subcutaneous explants cultured in vivo, which we previously reported to demonstrate stem tissue phenotype both in vivo and in vitro. Based on this observation, we cultured cell-scaffold constructs in vitro to assess early time point interactions between cells and the matrix as a function of pore size. We demonstrate that principle curvature directly influences nuclear aspect and cell aggregation in vitro. Scaffold pores with a sufficiently low degree of principle curvature enables cell differentiation; pharmacologic inhibition of actin cytoskeleton polymerization in these scaffolds decreased differentiation, indicating a critical role of the cytoskeleton in transducing cues from the scaffold pore microenvironment to the cell nucleus. We fabricated a macropore model, which allows for three-dimensional confocal imaging and demonstrates that a higher principle curvature facilitates cell aggregation and the formation of a potentially protective niche within scaffold macropores which prevents MSC differentiation and retains their stemness. Sufficiently high principle curvature upregulates yes-associated protein (YAP) phosphorylation while decreased principle curvature downregulates YAP phosphorylation and increases YAP nuclear translocation with subsequent transcriptional activation towards an osteogenic differentiation fate. Finally, we demonstrate that the inhibition of the YAP/TAZ pathway causes a defect in differentiation, while YAP/TAZ activation causes premature differentiation in a curvature-dependent way when modulated by verteporfin (VP) and 1-oleyl-lysophosphatidic acid (LPA), respectively, confirming the critical role of biomaterials-mediated YAP/TAZ signaling in cell differentiation and fate specification. Our data support that the principle curvature of scaffold macropores is a critical design criterion which guides the differentiation trajectory of mesenchymal stem cells' scaffolds. Biomaterial-mediated regulation of YAP/TAZ may significantly contribute to influencing the regenerative outcomes of biomaterials-based tissue engineering strategies through their specific pore design.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Biocompatible Materials/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Tissue Engineering
3.
Acta Biomater ; 118: 215-232, 2020 12.
Article in English | MEDLINE | ID: mdl-33065285

ABSTRACT

Biomimetic bone regeneration methods which demonstrate both clinical and manufacturing feasibility, as alternatives to autogenic or allogenic bone grafting, remain a challenge to the field of tissue engineering. Here, we report the pro-osteogenic capacity of exosomes derived from human dental pulp stem cells (hDPSCs) to facilitate bone marrow stromal cell (BMSC) differentiation and mineralization. To support their delivery, we engineered a biodegradable polymer delivery platform to improve the encapsulation and the controlled release of exosomes on a tunable time scale from poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) triblock copolymer microspheres. Our delivery platform integrates within three-dimensional tissue engineering scaffolds to enable a straightforward surgical insertion into a mouse calvarial defect. We demonstrate the osteogenic potential of these functional constructs in vitro and in vivo. Controlled release of osteogenic hDPSC-derived exosomes facilitates osteogenic differentiation of BMSCs, leading to mineralization to a degree which is comparable to exogenous administration of the same exosomes in human and mouse BMSCs. By recruiting endogenous cells to the defects and facilitating their differentiation, the controlled release of osteogenic exosomes from a tissue engineering scaffold demonstrates accelerated bone healing in vivo at 8 weeks. Exosomes recapitulate the advantageous properties of mesenchymal stem/progenitor cells, without manufacturing or immunogenic concerns associated with transplantation of exogenous cells. This biomaterial platform enables exosome-mediated bone regeneration in an efficacious and clinically relevant way.


Subject(s)
Exosomes , Osteogenesis , Animals , Bone Regeneration , Cell Differentiation , Cell Transplantation , Delayed-Action Preparations , Mice , Tissue Scaffolds
4.
J Control Release ; 324: 679-694, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32534011

ABSTRACT

Mineralized enamel and dentin provide protection to the dental pulp, which is vital tissue rich with cells, vasculature, and nerves in the inner tooth. Dental caries left untreated threaten exposure of the dental pulp, providing facile access for bacteria to cause severe infection both in the pulp and systemically. Dental materials which stimulate the formation of a protective dentin bridge after insult are necessary to seal the pulp chamber in an effort to maintain natural dentition and prevent pulpal infection. Dental materials to date including calcium hydroxide paste, mineral trioxide aggregate, and glass ionomer resin, are used with mixed results. Herein we exploited the cell-cell communicative properties of exosomes, extracellular vesicles derived from both mineralizing primary human dental pulp stem cells (hDPSCs) and an immortalized murine odontoblast cell line (MDPC-23), to catalyze the formation of a reactionary dentin bridge by recruiting endogenous stem cells of the dental pulp, through an easy-to-handle delivery vehicle which allows for their therapeutic controlled delivery at the pulp interface. Exosomes derived from both hDPSCs and MDPCs upregulated odontogenic gene expression and increased mineralization in vitro. We designed an amphiphilic synthetic polymeric vehicle from a triblock copolymer which encapsulates exosomes by polymeric self-assembly and maintains their biologic integrity throughout release up to 8-12 weeks. The controlled release of odontogenic exosomes resulted in a reparative dentin bridge formation, superior to glass-ionomer cement alone in vivo, in a rat molar pulpotomy model after six weeks. We have developed a platform for the encapsulation and controlled, tunable release of cell-derived exosomes, which maintains their advantageous physiologic properties reflective of the donor cells. This platform is used to modulate downstream recipient cells towards a designed dentinogenic trajectory in vitro and in vivo. Additionally, we have demonstrated the utility of an immortalized cell line to produce a high yield of exosomes with cross-species efficacy.


Subject(s)
Dental Caries , Exosomes , Animals , Biomimetics , Delayed-Action Preparations , Dental Caries/therapy , Dental Pulp Capping , Dentinogenesis , Drug Combinations , Mice , Oxides , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...