Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
J Clin Oncol ; : JCO2401487, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094067

ABSTRACT

BACKGROUND: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell (PBSC) transplantation for non-Hodgkin lymphoma (NHL). Prior studies report an association between clonal hematopoiesis (CH) in PBSC and risk of t-MN, but small samples precluded examination of risk within specific sub-populations. METHODS: Targeted DNA sequencing was performed to identify CH mutations in PBSC from a retrospective cohort of 984 NHL patients (median age at transplant 57y; range: 18-78). Fine-Gray proportional subdistribution hazard regression models estimated association between number of CH mutations and t-MN, adjusting for demographic, clinical, and therapeutic variables. Secondary analyses evaluated association between CH and t-MN among males and females. RESULTS: CH was identified in PBSC from 366 patients (37.2%). t-MN developed in 60 patients after median follow-up of 5y. Presence of ≥2 mutations conferred increased t-MN risk (adjusted hazard ratio [aHR]=2.10, 95% confidence interval [CI]=1.08-4.11, p=0.029). CH was associated with increased t-MN risk among males (aHR=1.83, 95%CI=1.01-3.31) but not females (aHR=0.56, 95%CI=0.15-2.09). Although prevalence and type of CH mutations in PBSC was comparable, the 8y cumulative incidence of t-MN was higher among males vs. females with CH (12.4% vs. 3.6%) but was similar between males and females without CH (4.9% vs. 3.9%). Expansion of CH clones from PBSC to t-MN was seen only among males. CONCLUSIONS: Presence of CH mutations in PBSC confers increased risk of t-MN after autologous transplantation in male but not female patients with NHL. Factors underlying sex-based differences in risk of CH progression to t-MN merit further investigation.

2.
Blood ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39102652

ABSTRACT

Venous thromboembolism (VTE) is common among older individuals, but provoking factors are not identified in many cases. Patients with myeloid malignancies, especially myeloproliferative neoplasms, are at increased risk for venous thrombosis. Clonal hematopoiesis of indeterminate potential (CHIP), a precursor state to myeloid malignancies, is common among the elderly and may similarly predispose to venous thrombosis. We evaluated overall and genotype-specific associations between CHIP and prevalent and incident VTE in >400,000 samples from the UK Biobank. CHIP was modestly associated with incident VTE with a hazard ratio of 1.17 (95% confidence interval (CI) 1.09-1.3; p= 0.002) but was not significantly associated with prevalent VTE with an odds ratio of 1.02 (95% CI 0.81-1.23; p= 0.81). TET2-mutant CHIP was associated with incident VTE with a hazard ratio of 1.33 (95% CI 1.05-1.69; p= 0.02). JAK2 mutations were highly associated with both prevalent and incident VTE risk with odds ratio of 6.58 (95% CI 2.65-16.29; p= 4.7 x 10-5) and hazard ratio of 4.2 (95% CI 2.18-8.08; p= 1.7 x 10-5), respectively, consistent with the thrombophilia associated with JAK2-mutant myeloproliferative neoplasms. The association between JAK2-mutant CHIP and VTE remained significant after excluding potential undiagnosed myeloproliferative neoplasms based on laboratory parameters. Compared to heterozygous factor V Leiden and heterozygous prothrombin gene mutation, JAK2-mutant CHIP was more strongly associated with VTE but was less common. These results indicate that most individuals with CHIP do not have an altered risk of thrombosis, but that individuals with JAK2-mutant CHIP have a significantly elevated risk of VTE.

3.
Nat Chem Biol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075252

ABSTRACT

Molecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed 'template-assisted covalent modification'. We identified a new series of BRD4 molecular glue degraders that recruit CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). Through comprehensive biochemical, structural and mutagenesis analyses, we elucidated how pre-existing structural complementarity between DCAF16 and BRD4BD2 serves as a template to optimally orient the degrader for covalent modification of DCAF16Cys58. This process stabilizes the formation of BRD4-degrader-DCAF16 ternary complex and facilitates BRD4 degradation. Supporting generalizability, we found that a subset of degraders also induces GAK-BRD4BD2 interaction through trans-labeling of GAK. Together, our work establishes 'template-assisted covalent modification' as a mechanism for covalent molecular glues, which opens a new path to proximity-driven pharmacology.

4.
Mol Cell ; 84(13): 2511-2524.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996460

ABSTRACT

BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.


Subject(s)
Chromatin , Cryoelectron Microscopy , Humans , Chromatin/metabolism , Chromatin/genetics , Protein Multimerization , Binding Sites , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Polymerization , HEK293 Cells , Gene Expression Regulation
5.
Int J Cardiol ; 409: 132184, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759798

ABSTRACT

BACKGROUND: Superficial plaque erosion causes many acute coronary syndromes. However, mechanisms of plaque erosion remain poorly understood, and we lack directed therapeutics for thrombotic complication. Human eroded plaques can harbor neutrophil extracellular traps (NETs) that propagate endothelial damage at experimental arterial lesions that recapitulate superficial erosion. Clonal Hematopoiesis of Indeterminate Potential (CHIP) denotes age-related clonal expansion of bone marrow-derived cells harboring somatic mutations in the absence of overt hematological disease. CHIP heightens the risk of cardiovascular disease, with the greatest increase seen in individuals with JAK2V617F. Neutrophils from mice and humans with JAK2V617F undergo NETosis more readily than Jak2WT (wild-type) cells. We hypothesized that JAK2V617F, by increasing propensity to NETosis, exacerbates aspects of superficial erosion. METHODS AND RESULTS: We generated Jak2V617F and Jak2WT mice with heterozygous Jak2V617F in myeloid cells. We induced areas of denuded endothelium that recapitulate features of superficial erosion and assessed endothelial integrity, cellular composition of the erosion, thrombosis rates, and response to ruxolitinib, a clinically available JAK1/2 inhibitor, in relation to genotype. Following experimental erosion, Jak2V617F mice have greater impairment of endothelial barrier function and increased rates of arterial thrombosis. Neointimas in Jak2V617F mice exhibit increased apoptosis, NETosis, and platelet recruitment. Jak2V617F mice treated with ruxolitinib show increased endothelial continuity and reduced apoptosis in the neointima comparable to levels in Jak2WT. CONCLUSIONS: These observations provide new mechanistic insight into the pathophysiology of superficial erosion, the heightened risk for myocardial infarction in JAK2V617F CHIP, and point the way to personalized therapeutics based on CHIP status.


Subject(s)
Clonal Hematopoiesis , Janus Kinase 2 , Thrombosis , Animals , Janus Kinase 2/genetics , Mice , Thrombosis/genetics , Clonal Hematopoiesis/genetics , Mutation , Endothelium, Vascular/pathology , Male , Mice, Transgenic , Mice, Inbred C57BL , Humans
6.
JAMA Cardiol ; 9(6): 497-506, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598228

ABSTRACT

Importance: Clonal hematopoiesis of indeterminate potential (CHIP) may contribute to the risk of atrial fibrillation (AF) through its association with inflammation and cardiac remodeling. Objective: To determine whether CHIP was associated with AF, inflammatory and cardiac biomarkers, and cardiac structural changes. Design, Setting, and Participants: This was a population-based, prospective cohort study in participants of the Atherosclerosis Risk in Communities (ARIC) study and UK Biobank (UKB) cohort. Samples were collected and echocardiography was performed from 2011 to 2013 in the ARIC cohort, and samples were collected from 2006 to 2010 in the UKB cohort. Included in this study were adults without hematologic malignancies, mitral valve stenosis, or previous mitral valve procedure from both the ARIC and UKB cohorts; additionally, participants without hypertrophic cardiomyopathy and congenital heart disease from the UKB cohort were also included. Data analysis was completed in 2023. Exposures: CHIP (variant allele frequency [VAF] ≥2%), common gene-specific CHIP subtypes (DNMT3A, TET2, ASXL1), large CHIP (VAF ≥10%), inflammatory and cardiac biomarkers (high-sensitivity C-reactive protein, interleukin 6 [IL-6], IL-18, high-sensitivity troponin T [hs-TnT] and hs-TnI, N-terminal pro-B-type natriuretic peptide), and echocardiographic indices. Main Outcome Measure: Incident AF. Results: A total of 199 982 adults were included in this study. In ARIC participants (4131 [2.1%]; mean [SD] age, 76 [5] years; 2449 female [59%]; 1682 male [41%]; 935 Black [23%] and 3196 White [77%]), 1019 had any CHIP (24.7%), and 478 had large CHIP (11.6%). In UKB participants (195 851 [97.9%]; mean [SD] age, 56 [8] years; 108 370 female [55%]; 87 481 male [45%]; 3154 Black [2%], 183 747 White [94%], and 7971 other race [4%]), 11 328 had any CHIP (5.8%), and 5189 had large CHIP (2.6%). ARIC participants were followed up for a median (IQR) period of 7.0 (5.3-7.7) years, and UKB participants were followed up for a median (IQR) period of 12.2 (11.3-13.0) years. Meta-analyzed hazard ratios for AF were 1.12 (95% CI, 1.01-1.25; P = .04) for participants with vs without large CHIP, 1.29 (95% CI, 1.05-1.59; P = .02) for those with vs without large TET2 CHIP (seen in 1340 of 197 209 [0.67%]), and 1.45 (95% CI, 1.02-2.07; P = .04) for those with vs without large ASXL1 CHIP (seen in 314 of 197 209 [0.16%]). Large TET2 CHIP was associated with higher IL-6 levels. Additionally, large ASXL1 was associated with higher hs-TnT level and increased left ventricular mass index. Conclusions and Relevance: Large TET2 and ASXL1, but not DNMT3A, CHIP was associated with higher IL-6 level, indices of cardiac remodeling, and increased risk for AF. Future research is needed to elaborate on the mechanisms driving the associations and to investigate potential interventions to reduce the risk.


Subject(s)
Atrial Fibrillation , Clonal Hematopoiesis , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Repressor Proteins , Humans , Female , Male , Atrial Fibrillation/genetics , Clonal Hematopoiesis/genetics , Repressor Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Middle Aged , Proto-Oncogene Proteins/genetics , Prospective Studies , Aged , DNA Methyltransferase 3A , DNA (Cytosine-5-)-Methyltransferases/genetics , Biomarkers/blood , Biomarkers/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Troponin T/genetics , Troponin T/blood , Troponin T/metabolism , Echocardiography , United Kingdom/epidemiology
7.
J Clin Oncol ; 42(20): 2415-2424, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38635938

ABSTRACT

PURPOSE: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell transplantation (aPBSCT) for Hodgkin lymphoma (HL). Although previous studies have reported an association between clonal hematopoiesis (CH) in the infused PBSC product and subsequent post-aPBSCT risk of t-MN in patients with non-HL, information about patients with HL treated with aPBSCT is not available. METHODS: We constructed a retrospective cohort of 321 patients with HL transplanted at a median age of 34 years (range, 18-71). Targeted DNA sequencing of PBSC products performed for CH-associated or myeloid malignancy-associated genes identified pathogenic mutations in these patients. RESULTS: CH was identified in the PBSC product of 46 patients (14.3%) with most prominent representation of DNMT3A (n = 25), PPM1D (n = 7), TET2 (n = 7), and TP53 (n = 5) mutations. Presence of CH in the PBSC product was an independent predictor of t-MN (adjusted hazard ratio [aHR], 4.50 [95% CI, 1.54 to 13.19]). Notably all patients with TP53 mutations in the PBSC product developed t-MN, whereas none of the patients with DNMT3A mutations alone (without co-occurring TP53 or PPM1D mutations) did. Presence of TP53 and/or PPM1D mutations was associated with a 7.29-fold higher hazard of t-MN when compared with individuals carrying no CH mutations (95% CI, 1.72 to 30.94). The presence of TP53 and/or PPM1D mutations was also associated with a 4.17-fold higher hazard of nonrelapse mortality (95% CI, 1.25 to 13.87). There was no association between CH and relapse-related mortality. CONCLUSION: The presence of TP53 and/or PPM1D mutations in the PBSC product increases the risk of post-aPBSCT t-MN and nonrelapse mortality among patients with HL and may support alternative therapeutic strategies.


Subject(s)
Clonal Hematopoiesis , Hodgkin Disease , Mutation , Neoplasms, Second Primary , Transplantation, Autologous , Humans , Hodgkin Disease/therapy , Hodgkin Disease/genetics , Adult , Female , Male , Middle Aged , Retrospective Studies , Adolescent , Transplantation, Autologous/adverse effects , Clonal Hematopoiesis/genetics , Young Adult , Aged , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/etiology , Peripheral Blood Stem Cell Transplantation/adverse effects , Tumor Suppressor Protein p53/genetics , DNA Methyltransferase 3A , Protein Phosphatase 2C/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Dioxygenases , DNA-Binding Proteins/genetics , Proto-Oncogene Proteins/genetics
8.
Article in English | MEDLINE | ID: mdl-38684868

ABSTRACT

Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.

9.
Circulation ; 149(18): 1419-1434, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38357791

ABSTRACT

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS: CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1ß (interleukin 1ß) or IL-6 (interleukin 6). RESULTS: Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1ß or IL-6. CONCLUSIONS: We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.


Subject(s)
Atrial Fibrillation , Clonal Hematopoiesis , DNA-Binding Proteins , Dioxygenases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Proto-Oncogene Proteins , Animals , Dioxygenases/metabolism , Dioxygenases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/etiology , Atrial Fibrillation/genetics , Atrial Fibrillation/pathology , Inflammasomes/metabolism , Humans , Mice , Clonal Hematopoiesis/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Male , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Middle Aged , Mice, Knockout , Risk Factors
10.
EMBO Mol Med ; 16(3): 445-474, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355749

ABSTRACT

TP53-mutant acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are characterized by chemotherapy resistance and represent an unmet clinical need. Chimeric antigen receptor (CAR) T-cells might be a promising therapeutic option for TP53-mutant AML/MDS. However, the impact of TP53 deficiency in AML cells on the efficacy of CAR T-cells is unknown. We here show that CAR T-cells engaging TP53-deficient leukemia cells exhibit a prolonged interaction time, upregulate exhaustion markers, and are inefficient to control AML cell outgrowth in vitro and in vivo compared to TP53 wild-type cells. Transcriptional profiling revealed that the mevalonate pathway is upregulated in TP53-deficient AML cells under CAR T-cell attack, while CAR T-cells engaging TP53-deficient AML cells downregulate the Wnt pathway. In vitro rational targeting of either of these pathways rescues AML cell sensitivity to CAR T-cell-mediated killing. We thus demonstrate that TP53 deficiency confers resistance to CAR T-cell therapy and identify the mevalonate pathway as a therapeutic vulnerability of TP53-deficient AML cells engaged by CAR T-cells, and the Wnt pathway as a promising CAR T-cell therapy-enhancing approach for TP53-deficient AML/MDS.


Subject(s)
Leukemia, Myeloid, Acute , Mevalonic Acid , Humans , Mevalonic Acid/metabolism , Wnt Signaling Pathway , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy, Adoptive , T-Lymphocytes , Tumor Suppressor Protein p53/genetics
11.
JAMA Netw Open ; 7(1): e2351927, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38231513

ABSTRACT

Importance: Clonal hematopoiesis (CH) with acquired pathogenic variants in myeloid leukemia driver genes is common in older adults but of unknown prognostic value. Objective: To investigate the prevalence of CH and the utility of the CH risk score (CHRS) in estimating all-cause and disease-specific mortality in older adults with CH. Design, Setting, and Participants: This population-based prospective cohort study involved community-dwelling older adults (aged 67-90 years) without hematologic malignant neoplasms (HMs) who were participants in the Atherosclerosis Risk in Communities Visit 5 at 4 US centers: Forsyth County, North Carolina; Jackson, Mississippi; Minneapolis, Minnesota; and Washington County, Maryland. Samples were collected from 2011 to 2013, sequencing was performed in 2022, and data analysis was completed in 2023. Exposure: The exposure was a diagnosis of CH. CHRS scores (calculated using 8 demographic, complete blood cell count, and molecular factors) were used to categorize individuals with CH into low-risk (CHRS ≤9.5), intermediate-risk (CHRS >9.5 to <12.5), and high-risk (CHRS ≥12.5) groups. Main Outcomes and Measures: The primary outcome was all-cause mortality, and secondary outcomes were HM mortality, cardiovascular disease mortality, and death from other causes. Results: Among 3871 participants without a history of HM (mean [SD] age, 75.7 [5.2] years; 2264 [58.5%] female individuals; 895 [23.1%] Black individuals; 2976 White individuals [76.9%]), 938 (24.2%) had CH. According to the CHRS, 562 (59.9%) were low risk, 318 (33.9%) were intermediate risk, and 58 (6.2%) were high risk. During a median (IQR) follow-up of 7.13 (5.63-7.78) years, 570 participants without CH (19.4%) and 254 participants with CH (27.1%) died. Mortality by CHRS risk group was 128 deaths (22.8%) for low risk, 93 (29.2%) for intermediate risk, and 33 (56.9%) for high risk. By use of multivariable competing risk regression, subdistribution hazard ratios (sHRs) for all-cause mortality were 1.08 (95% CI, 0.89-1.31; P = .42) for low-risk CH, 1.12 (95% CI, 0.89-1.41; P = .31) for intermediate-risk CH, and 2.52 (95% CI, 1.72-3.70; P < .001) for high-risk CH compared with no CH. Among individuals in the high-risk CH group, the sHR of death from HM (6 deaths [10.3%]) was 25.58 (95% CI, 7.55-86.71; P < .001) and that of cardiovascular death (12 deaths [20.7%]) was 2.91 (95% CI, 1.55-5.47; P < .001). Conclusions and Relevance: In this cohort study, the CHRS was associated with all-cause, HM-related, and cardiovascular disease mortality in older adults with CH and may be useful in shared decision-making to guide clinical management and identify appropriate candidates for clinical trials.


Subject(s)
Cardiovascular Diseases , Female , Humans , Aged , Male , Clonal Hematopoiesis , Cohort Studies , Prospective Studies , Risk Factors
12.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165043

ABSTRACT

The concept of induced protein degradation by small molecules has emerged as a promising therapeutic strategy that is particularly effective in targeting proteins previously considered "undruggable." Thalidomide analogs, employed in the treatment of multiple myeloma, stand as prime examples. These compounds serve as molecular glues, redirecting the CRBN E3 ubiquitin ligase to degrade myeloma-dependency factors, IKZF1 and IKZF3. The clinical success of thalidomide analogs demonstrates the therapeutic potential of induced protein degradation. Beyond molecular glue degraders, several additional modalities to trigger protein degradation have been developed and are currently under clinical evaluation. These include heterobifunctional degraders, polymerization-induced degradation, ligand-dependent degradation of nuclear hormone receptors, disruption of protein interactions, and various other strategies. In this Review, we will provide a concise overview of various degradation modalities, their clinical applications, and potential future directions in the field of protein degradation.


Subject(s)
Multiple Myeloma , Thalidomide , Humans , Proteolysis , Lenalidomide/therapeutic use , Ubiquitination , Adaptor Proteins, Signal Transducing/metabolism , Multiple Myeloma/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Blood Adv ; 8(4): 959-967, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38197863

ABSTRACT

ABSTRACT: Clonal hematopoiesis of indeterminate potential (CHIP), the clonal expansion of myeloid cells with leukemogenic mutations, results in increased coronary artery disease (CAD) risk. CHIP is more prevalent among people with HIV (PWH), but the risk factors are unknown. CHIP was identified among PWH in REPRIEVE (Randomized Trial to Prevent Vascular Events in HIV) using whole-exome sequencing. Logistic regression was used to associate sociodemographic factors and HIV-specific factors with CHIP adjusting for age, sex, and smoking status. In the studied global cohort of 4486 PWH, mean age was 49.9 (standard deviation [SD], 6.4) years; 1650 (36.8%) were female; and 3418 (76.2%) were non-White. CHIP was identified in 223 of 4486 (4.97%) and in 38 of 373 (10.2%) among those aged ≥60 years. Age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.05-1.09; P < .0001) and smoking (OR, 1.37; 95% CI, 1.14-1.66; P < .001) associated with increased odds of CHIP. Globally, participants outside of North America had lower odds of CHIP including sub-Saharan Africa (OR, 0.57; 95% CI, 0.4-0.81; P = .0019), South Asia (OR, 0.45; 95% CI, 0.23-0.80; P = .01), and Latin America/Caribbean (OR, 0.56; 95% CI, 0.34-0.87; P = .014). Hispanic/Latino ethnicity (OR, 0.38; 95% CI, 0.23-0.54; P = .002) associated with significantly lower odds of CHIP. Among HIV-specific factors, CD4 nadir <50 cells/mm3 associated with a 1.9-fold (95%CI, 1.21-3.05; P = .006) increased odds of CHIP, with the effect being significantly stronger among individuals with short duration of antiretroviral therapy (ART; OR, 4.15; 95% CI, 1.51-11.1; P = .005) (Pinteraction= .0492). Among PWH at low-to-moderate CAD risk on stable ART, smoking, CD4 nadir, North American origin, and non-Hispanic ethnicity associated with increased odds of CHIP. This trial was registered at www.ClinicalTrials.gov as NCT02344290.


Subject(s)
Clonal Hematopoiesis , HIV Infections , Humans , Female , Middle Aged , Male , Risk Factors , HIV Infections/drug therapy , HIV Infections/complications , North America , Ethnicity
14.
Arthritis Rheumatol ; 76(3): 438-443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37909388

ABSTRACT

OBJECTIVE: Giant cell arteritis (GCA) is an age-related vasculitis. Prior studies have identified an association between GCA and hematologic malignancies (HMs). How the presence of somatic mutations that drive the development of HMs, or clonal hematopoiesis (CH), may influence clinical outcomes in GCA is not well understood. METHODS: To examine an association between CH and GCA, we analyzed sequenced exomes of 470,960 UK Biobank (UKB) participants for the presence of CH and used multivariable Cox regression. To examine the clinical phenotype of GCA in patients with and without somatic mutations across the spectrum of CH to HM, we performed targeted sequencing of blood samples and electronic health record review on 114 patients with GCA seen at our institution. We then examined associations between specific clonal mutations and GCA disease manifestations. RESULTS: UKB participants with CH had a 1.48-fold increased risk of incident GCA compared to UKB participants without CH. GCA risk was highest among individuals with cytopenia (hazard ratio [HR] 2.98, P = 0.00178) and with TET2 mutation (HR 2.02, P = 0.00116). Mutations were detected in 27.2% of our institutional GCA cohort, three of whom had HM at GCA diagnosis. TET2 mutations were associated with vision loss in patients with GCA (odds ratio 4.33, P = 0.047). CONCLUSIONS: CH increases risk for development of GCA in a genotype-specific manner, with the greatest risk being conferred by the presence of mutations in TET2. Somatic TET2 mutations likewise increase the risk of GCA-associated vision loss. Integration of somatic genetic testing in GCA diagnostics may be warranted in the future.


Subject(s)
Dioxygenases , Giant Cell Arteritis , Humans , Giant Cell Arteritis/complications , Mutation , DNA-Binding Proteins/genetics
15.
JCO Oncol Pract ; 20(2): 220-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37683132

ABSTRACT

PURPOSE: This study investigated the effectiveness of algorithmic testing in hematopathology at the Brigham and Women's Hospital and Dana-Farber Cancer Institute (DFCI). The algorithm was predicated on test selection after an initial pathologic evaluation to maximize cost-effective testing, especially for expensive molecular and cytogenetic assays. MATERIALS AND METHODS: Standard ordering protocols (SOPs) for 17 disease categories were developed and encoded in a decision support application. Six months of retrospective data from application beta testing was obtained and compared with actual testing practices during that timeframe. In addition, 2 years of prospective data were also obtained from patients at one community satellite site. RESULTS: A total of 460 retrospective cases (before introduction of algorithmic testing) and 109 prospective cases (following introduction) were analyzed. In the retrospective data, 61.7% of tests (509 of 825) were concordant with the SOPs while 38.3% (316 of 825) were overordered and 30.8% (227 of 736) of SOP-recommended tests were omitted. In the prospective data, 98.8% of testing was concordant (244 of 247 total tests) with only 1.2% overordered tests (3 of 247) and 7.6% omitted tests (20 of 264 SOP-recommended tests; overall P < .001). The cost of overordered tests before implementing SOP indicates a potential annualized saving of $1,347,520 in US dollars (USD) in overordered testing at Brigham and Women's Hospital/DFCI. Only two of 316 overordered tests (0.6%) returned any additional information, both for extremely rare clinical circumstances. CONCLUSION: Implementation of SOPs dramatically improved test ordering practices, with a just right number of ancillary tests that minimizes cost and has no significant impact on acquiring key informative test results.


Subject(s)
Bone Marrow , Hospitals , Humans , Female , Bone Marrow/pathology , Retrospective Studies , Molecular Biology
16.
Nat Chem Biol ; 20(1): 93-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679459

ABSTRACT

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


Subject(s)
Cyclins , Ubiquitin-Protein Ligases , Cyclins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Structure-Activity Relationship
17.
Eur Heart J ; 45(10): 791-805, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37952204

ABSTRACT

BACKGROUND AND AIMS: Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutations, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias. METHODS: UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. RESULTS: This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04-1.18; P = .001] and 1.13 (95% CI 1.05-1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01-1.19; P = .031) and 1.13 (95% CI 1.03-1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00-1.34; P = .049) and 1.22 (95% CI 1.03-1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07-1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. CONCLUSIONS: CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.


Subject(s)
Atrial Fibrillation , Heart Arrest , Heart Failure , Humans , Clonal Hematopoiesis , Bradycardia
18.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38096371

ABSTRACT

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Subject(s)
Leukemia, Myeloid, Acute , Morpholines , Myeloid-Lymphoid Leukemia Protein , Phthalimides , Piperidones , Humans , Lenalidomide/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation
19.
Nat Chem ; 16(2): 218-228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110475

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.


Subject(s)
Proteins , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Thalidomide/pharmacology
20.
Leukemia ; 38(3): 590-600, 2024 03.
Article in English | MEDLINE | ID: mdl-38123696

ABSTRACT

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.


Subject(s)
Interleukin-7 , Receptors, Antigen, T-Cell , Humans , Lenalidomide/pharmacology , Receptors, Antigen, T-Cell/genetics , Interleukin-7/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism , Immunotherapy, Adoptive , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL