Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 80(6): 903-921, 2017 06.
Article in English | MEDLINE | ID: mdl-28437165

ABSTRACT

A multiyear interagency Listeria monocytogenes Market Basket Survey was undertaken for selected refrigerated ready-to-eat foods purchased at retail in four FoodNet sites in the United States. Food samples from 16 food categories in six broad groups (seafood, produce, dairy, meat, eggs, and combination foods) were collected weekly at large national chain supermarkets and independent grocery stores in California, Maryland, Connecticut, and Georgia for 100 weeks between December 2010 and March 2013. Of the 27,389 total samples, 116 samples tested positive by the BAX PCR system for L. monocytogenes , and the pathogen was isolated and confirmed for 102 samples. Among the 16 food categories, the proportion of positive samples (i.e., without considering clustering effects) based on recovery of a viable isolate of L. monocytogenes ranged from 0.00% (95% confidence interval: 0.00, 0.18) for the category of soft-ripened and semisoft cheese to 1.07% (0.63, 1.68) for raw cut vegetables. Among the 571 samples that tested positive for Listeria-like organisms, the proportion of positive samples ranged from 0.79% (0.45, 1.28) for soft-ripened and semisoft cheese to 4.76% (2.80, 7.51) for fresh crab meat or sushi. Across all 16 categories, L. monocytogenes contamination was significantly associated with the four states (P < 0.05) but not with the packaging location (prepackaged by the manufacturer versus made and/or packaged in the store), the type of store (national chain versus independent), or the season. Among the 102 samples positive for L. monocytogenes , levels ranged from <0.036 most probable number per g to 6.1 log CFU/g. For delicatessen (deli) meats, smoked seafood, seafood salads, soft-ripened and semisoft cheeses, and deli-type salads without meat, the percentage of positive samples was significantly lower (P < 0.001) in this survey than that reported a decade ago based on comparable surveys in the United States. Use of mixed logistic regression models to address clustering effects with regard to the stores revealed that L. monocytogenes prevalence ranged from 0.11% (0.03, 0.34) for sprouts (prepackaged) to 1.01% (0.58, 1.74) for raw cut vegetables (prepackaged).


Subject(s)
Listeria monocytogenes/isolation & purification , Meat Products , California , Connecticut , Food Contamination , Food Microbiology , Georgia , Maryland , Prevalence , United States
2.
J Food Prot ; 76(9): 1500-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23992494

ABSTRACT

Both high-fat and low-fat ground beef (percent lean:fat = ca. 70:30 and 93:7, respectively) were inoculated with a 6-strain cocktail of non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) or a five-strain cocktail of E. coli O157:H7 (ca. 7.0 log CFU/g). Patties were pressed (ca. 2.54 cm thick, ca. 300 g each) and then refrigerated (4°C, 18 to 24 h), or frozen (-18°C, 3 weeks), or frozen (-18°C, 3 weeks) and then thawed (4°C for 18 h or 21°C for 10 h) before being cooked on commercial gas or electric grills to internal temperatures of 60 to 76.6°C. For E. coli O157:H7, regardless of grill type or fat level, cooking refrigerated patties to 71.1 or 76.6°C decreased E. coli O157:H7 numbers from an initial level of ca. 7.0 log CFU/g to a final level of ≤1.0 log CFU/g, whereas decreases to ca. 1.1 to 3.1 log CFU/g were observed when refrigerated patties were cooked to 60.0 or 65.5°C. For patties that were frozen or freeze-thawed and cooked to 71.1 or 76.6°C, E. coli O157:H7 numbers decreased to ca. 1.7 or ≤0.7 log CFU/g. Likewise, pathogen numbers decreased to ca. 0.7 to 3.7 log CFU/g in patties that were frozen or freeze-thawed and cooked to 60.0 or 65.5°C. For STEC, regardless of grill type or fat level, cooking refrigerated patties to 71.1 or 76.6°C decreased pathogen numbers from ca. 7.0 to ≤0.7 log CFU/g, whereas decreases to ca. 0.7 to 3.6 log CFU/g were observed when refrigerated patties were cooked to 60.0 or 65.5°C. For patties that were frozen or freeze-thawed and cooked to 71.1 or 76.6°C, STEC numbers decreased to a final level of ca. 1.5 to ≤0.7 log CFU/g. Likewise, pathogen numbers decreased from ca. 7.0 to ca. 0.8 to 4.3 log CFU/g in patties that were frozen or freeze-thawed and cooked to 60.0 or 65.5°C. Thus, cooking ground beef patties that were refrigerated, frozen, or freeze-thawed to internal temperatures of 71.1 and 76.6°C was effective for eliminating ca. 5.1 to 7.0 log CFU of E. coli O157:H7 and STEC per g.


Subject(s)
Escherichia coli O157/growth & development , Food Handling/methods , Food Microbiology , Meat Products/microbiology , Shiga-Toxigenic Escherichia coli/growth & development , Animals , Cattle , Colony Count, Microbial , Cooking/methods , Shiga Toxin/metabolism , Temperature
3.
J Food Prot ; 69(11): 2600-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17133802

ABSTRACT

The U.S. Food Safety and Inspection Service (FSIS) pathogen reduction-hazard analysis critical control point systems final rule, published in 1996, established Salmonella performance standards for broiler chicken, cow and bull, market hog, and steer and heifer carcasses and for ground beef, chicken, and turkey meat. In 1998, the FSIS began testing to verify that establishments are meeting performance standards. Samples are collected in sets in which the number of samples is defined but varies according to product class. A sample set fails when the number of positive Salmonella samples exceeds the maximum number of positive samples allowed under the performance standard. Salmonella sample sets collected at 1,584 establishments from 1998 through 2003 were examined to identify factors associated with failure of one or more sets. Overall, 1,282 (80.9%) of establishments never had failed sets. In establishments that did experience set failure(s), generally the failed sets were collected early in the establishment testing history, with the exception of broiler establishments where failure(s) occurred both early and late in the course of testing. Small establishments were more likely to have experienced a set failure than were large or very small establishments, and broiler establishments were more likely to have failed than were ground beef, market hog, or steer-heifer establishments. Agency response to failed Salmonella sample sets in the form of in-depth verification reviews and related establishment-initiated corrective actions have likely contributed to declines in the number of establishments that failed sets. A focus on food safety measures in small establishments and broiler processing establishments should further reduce the number of sample sets that fail to meet the Salmonella performance standard.


Subject(s)
Consumer Product Safety , Food Contamination , Food Inspection/standards , Meat Products/microbiology , Poultry Products/microbiology , Salmonella/isolation & purification , Animals , Cattle , Chickens , Female , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Humans , Male , Proportional Hazards Models , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Swine , Turkeys , United States
4.
J Food Prot ; 69(11): 2607-14, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17133803

ABSTRACT

The U.S. Food Safety and Inspection Service (FSIS) tests sets of samples of selected raw meat and poultry products for Salmonella to ensure that federally inspected establishments meet performance standards defined in the pathogen reduction-hazard analysis and critical control point system (PR-HACCP) final rule. In the present report, sample set results are described and associations between set failure and set and establishment characteristics are identified for 4,607 sample sets collected from 1998 through 2003. Sample sets were obtained from seven product classes: broiler chicken carcasses (n = 1,010), cow and bull carcasses (n = 240), market hog carcasses (n = 560), steer and heifer carcasses (n = 123), ground beef (n = 2,527), ground chicken (n = 31), and ground turkey (n = 116). Of these 4,607 sample sets, 92% (4,255) were collected as part of random testing efforts (A sets), and 93% (4,166) passed. However, the percentage of positive samples relative to the maximum number of positive results allowable in a set increased over time for broilers but decreased or stayed the same for the other product classes. Three factors associated with set failure were identified: establishment size, product class, and year. Set failures were more likely early in the testing program (relative to 2003). Small and very small establishments were more likely to fail than large ones. Set failure was less likely in ground beef than in other product classes. Despite an overall decline in set failures through 2003, these results highlight the need for continued vigilance to reduce Salmonella contamination in broiler chicken and continued implementation of programs designed to assist small and very small establishments with PR-HACCP compliance issues.


Subject(s)
Food Contamination , Food Inspection/standards , Food-Processing Industry/standards , Meat/microbiology , Poultry/microbiology , Salmonella/isolation & purification , Animals , Cattle/microbiology , Chickens/microbiology , Consumer Product Safety , Female , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Humans , Male , Meat Products/microbiology , Poultry Products/microbiology , Proportional Hazards Models , Swine/microbiology , Turkeys/microbiology , United States
5.
J Food Prot ; 68(2): 282-91, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15726970

ABSTRACT

The response of a potential nonpathogenic surrogate organism to a particular treatment should closely mimic the response of the target pathogenic organism. In this study, growth characteristics (generation time, lag phase duration, and maximum population), pH at stationary phase, and survival characteristics (level of attachment and survival on apple surfaces, resistance to hydrogen peroxide decontamination treatments, and thermal resistance at 60 degrees C) of 15 nonpathogenic generic Escherichia coli strains and one nonpathogenic E. coli O157:H43 strain were compared with those of two E. coli O157:H7 strains and two Salmonella strains. Few differences in growth characteristics or pH at stationary phase were evident between nonpathogenic and pathogenic strains tested. However, considerably more separation among strains was seen following investigation of survival characteristics. E. coli ECRC 97.0152, which does not contain genes encoding for known virulence factors associated with E. coli O157:H7, appears to be a good surrogate candidate, with growth and survival characteristics similar to those of E. coli O157:H7 strains. The less heat-resistant surrogate strains E. coli NRRL B-766 and NRRL B-3054 and E. coli ATCC 11775, ATCC 25253, and ATCC 25922 may be used when attempting to model the heat resistance of Salmonella Montevideo G4639 and Salmonella Poona RM 2350, respectively. These surrogate strains may be useful for evaluating the efficacy of intervention steps in reducing populations of selected strains of E. coli O157:H7 and Salmonella in processing environments where these pathogens cannot be introduced.


Subject(s)
Escherichia coli O157/physiology , Escherichia coli/physiology , Food Microbiology , Models, Biological , Salmonella/physiology , Adaptation, Physiological , Bacterial Adhesion/physiology , Colony Count, Microbial , Escherichia coli/growth & development , Escherichia coli O157/growth & development , Hydrogen-Ion Concentration , Kinetics , Pilot Projects , Salmonella/growth & development , Temperature , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...