Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948725

ABSTRACT

Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While primarily a motor disorder, psychiatric and cognitive symptoms have been reported. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca2+ imaging in a transgenic mouse model of SCA8. We observed that neocortical networks in SCA8+ mice were hyperconnected globally which led to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.

2.
Dystonia ; 22023.
Article in English | MEDLINE | ID: mdl-37800168

ABSTRACT

Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.

3.
bioRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090567

ABSTRACT

The neural dynamics underlying self-initiated versus sensory driven movements is central to understanding volitional action. Upstream motor cortices are associated with the generation of internally-driven movements over externally-driven. Here we directly compare cortical dynamics during internally- versus externally-driven locomotion using wide-field Ca2+ imaging. We find that secondary motor cortex (M2) plays a larger role in internally-driven spontaneous locomotion transitions, with increased M2 functional connectivity during starting and stopping than in the externally-driven, motorized treadmill locomotion. This is not the case in steady-state walk. In addition, motorized treadmill and spontaneous locomotion are characterized by markedly different patterns of cortical activation and functional connectivity at the different behavior periods. Furthermore, the patterns of fluorescence activation and connectivity are uncorrelated. These experiments reveal widespread and striking differences in the cortical control of internally- and externally-driven locomotion, with M2 playing a major role in the preparation and execution of the self-initiated state.

4.
Res Sq ; 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090635

ABSTRACT

The neural dynamics underlying self-initiated versus sensory driven movements is central to understanding volitional action. Upstream motor cortices are associated with the generation of internally-driven movements over externally-driven. Here we directly compare cortical dynamics during internally- versus externally-driven locomotion using wide-field Ca2+ imaging. We find that secondary motor cortex (M2) plays a larger role in internally-driven spontaneous locomotion transitions, with increased M2 functional connectivity during starting and stopping than in the externally-driven, motorized treadmill locomotion. This is not the case in steady-state walk. In addition, motorized treadmill and spontaneous locomotion are characterized by markedly different patterns of cortical activation and functional connectivity at the different behavior periods. Furthermore, the patterns of fluorescence activation and connectivity are uncorrelated. These experiments reveal widespread and striking differences in the cortical control of internally- and externally-driven locomotion, with M2 playing a major role in the preparation and execution of the self-initiated state.

5.
Cereb Cortex ; 33(11): 6543-6558, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36734268

ABSTRACT

The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.


Subject(s)
Calcium , Neocortex , Mice , Animals , Neocortex/diagnostic imaging , Time Factors , Magnetic Resonance Imaging/methods
6.
Neurobiol Dis ; 176: 105943, 2023 01.
Article in English | MEDLINE | ID: mdl-36476979

ABSTRACT

>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.


Subject(s)
Brain Concussion , Mice , Animals , Brain Concussion/diagnostic imaging , Calcium , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods
7.
Biology (Basel) ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36358302

ABSTRACT

A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.

8.
Adv Healthc Mater ; 11(18): e2200626, 2022 09.
Article in English | MEDLINE | ID: mdl-35869830

ABSTRACT

Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca2+ ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca2+ imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm2 of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca2+ signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca2+ signals that depend on the behavioral state.


Subject(s)
Calcium , Polymers , Animals , Electrodes, Implanted , Electrophysiological Phenomena , Mice , Mice, Transgenic , Skull
9.
Cerebellum ; 21(5): 814-820, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35471627

ABSTRACT

After decades of study, a comprehensive understanding of cerebellar function remains elusive. Several hypotheses have been put forward over the years, including that the cerebellum functions as a forward internal model. Integrated into the forward model framework is the long-standing view that Purkinje cell complex spike discharge encodes error information. In this brief review, we address both of these concepts based on our recordings of cerebellar Purkinje cells over the last decade as well as newer findings from the literature. During a high-dimensionality tracking task requiring continuous error processing, we find that complex spike discharge provides a rich source of non-error signals to Purkinje cells, indicating that the classical error encoding role ascribed to climbing fiber input needs revision. Instead, the simple spike discharge of Purkinje cells carries robust predictive and feedback signals of performance errors, as well as kinematics. These simple spike signals are consistent with a forward internal model. We also show that the information encoded in the simple spike is dynamically adjusted by the complex spike firing. Synthesis of these observations leads to the hypothesis that complex spikes convey behavioral state changes, possibly acting to select and maintain forward models.


Subject(s)
Movement , Purkinje Cells , Action Potentials , Biomechanical Phenomena , Cerebellum
10.
Cereb Cortex ; 32(12): 2668-2687, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34689209

ABSTRACT

Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully understanding the cerebral cortex's role in motor behavior requires a mesoscopic-level description of the cortical regions engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during locomotion. Using the correlations between the time series of Ca2+ fluorescence from 28 regions (nodes) obtained using spatial independent component analysis (sICA), we examined the changes in functional connectivity of the cortex from rest to locomotion with a goal of understanding the changes to the cortical functional state that facilitate locomotion. Both the transitions from rest to locomotion and from locomotion to rest show marked increases in correlation among most nodes. However, once a steady state of continued locomotion is reached, many nodes, including primary motor and somatosensory nodes, show decreases in correlations, while retrosplenial and the most anterior nodes of the secondary motor cortex show increases. These results highlight the changes in functional connectivity in the cerebral cortex, representing a series of changes in the cortical state from rest to locomotion and on return to rest.


Subject(s)
Calcium , Motor Cortex , Animals , Brain Mapping , Diagnostic Imaging , Locomotion , Magnetic Resonance Imaging , Mice , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
11.
Curr Biol ; 32(1): 14-25.e4, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34678162

ABSTRACT

Schizophrenia results from hundreds of known causes, including genetic, environmental, and developmental insults that cooperatively increase risk of developing the disease. In spite of the diversity of causal factors, schizophrenia presents with a core set of symptoms and brain abnormalities (both structural and functional) that particularly impact the prefrontal cortex. This suggests that many different causal factors leading to schizophrenia may cause prefrontal neurons and circuits to fail in fundamentally similar ways. The nature of convergent malfunctions in prefrontal circuits at the cell and synaptic levels leading to schizophrenia are not known. Here, we apply convergence-guided search to identify core pathological changes in the functional properties of prefrontal circuits that lie downstream of mechanistically distinct insults relevant to the disease. We compare the impacts of blocking NMDA receptors in monkeys and deleting a schizophrenia risk gene in mice on activity timing and effective communication in prefrontal local circuits. Although these manipulations operate through distinct molecular pathways and biological mechanisms, we found they produced convergent pathophysiological effects on prefrontal local circuits. Both manipulations reduced the frequency of synchronous (0-lag) spiking between prefrontal neurons and weakened functional interactions between prefrontal neurons at monosynaptic lags as measured by information transfer between the neurons. The two observations may be related, as reduction in synchronous spiking between prefrontal neurons would be expected to weaken synaptic connections between them via spike-timing-dependent synaptic plasticity. These data suggest that the link between spike timing and synaptic connectivity could comprise the functional vulnerability that multiple risk factors exploit to produce disease.


Subject(s)
Schizophrenia , Animals , Mice , Neurons/metabolism , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics
12.
J Neurosci Methods ; 354: 109100, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33600850

ABSTRACT

Deciphering neurologic function is a daunting task, requiring understanding the neuronal networks and emergent properties that arise from the interactions among single neurons. Mechanistic insights into neuronal networks require tools that simultaneously assess both single neuron activity and the consequent mesoscale output. The development of cranial window technologies, in which the skull is thinned or replaced with a synthetic optical interface, has enabled monitoring neuronal activity from subcellular to mesoscale resolution in awake, behaving animals when coupled with advanced microscopy techniques. Here we review recent achievements in cranial window technologies, appraise the relative merits of each design and discuss the future research in cranial window design.


Subject(s)
Brain , Skull , Animals , Microscopy , Neurons , Technology
13.
Nat Commun ; 10(1): 1500, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940809

ABSTRACT

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We engineered 'See-Shells'-digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access to 45 mm2 of the dorsal cerebral cortex in the mouse. We demonstrate the ability to perform mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. See-Shells allow calcium imaging from multiple, non-contiguous regions across the cortex. Perforated See-Shells enable introducing penetrating neural probes to perturb or record neural activity simultaneously with whole cortex imaging. See-Shells are constructed using common desktop fabrication tools, providing a powerful tool for investigating brain structure and function.


Subject(s)
Cerebral Cortex/chemistry , Cerebral Cortex/physiology , Polymers/chemistry , Animals , Calcium/metabolism , Male , Mice , Mice, Inbred C57BL , Skull/chemistry , Skull/physiology
14.
Neuroscientist ; 25(3): 241-257, 2019 06.
Article in English | MEDLINE | ID: mdl-29985093

ABSTRACT

Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.


Subject(s)
Movement , Psychomotor Performance , Purkinje Cells/physiology , Action Potentials , Animals , Biomechanical Phenomena , Feedback, Physiological , Humans , Models, Neurological
15.
Cerebellum ; 17(6): 735-746, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29982917

ABSTRACT

The climbing fiber-Purkinje cell circuit is one of the most powerful and highly conserved in the central nervous system. Climbing fibers exert a powerful excitatory action that results in a complex spike in Purkinje cells and normal functioning of the cerebellum depends on the integrity of climbing fiber-Purkinje cell synapse. Over the last 50 years, multiple hypotheses have been put forward on the role of the climbing fibers and complex spikes in cerebellar information processing and motor control. Central to these theories is the nature of the interaction between the low-frequency complex spike discharge and the high-frequency simple spike firing of Purkinje cells. This review examines the major hypotheses surrounding the action of the climbing fiber-Purkinje cell projection, discussing both supporting and conflicting findings. The review describes newer findings establishing that climbing fibers and complex spikes provide predictive signals about movement parameters and that climbing fiber input controls the encoding of behavioral information in the simple spike firing of Purkinje cells. Finally, we propose the dynamic encoding hypothesis for complex spike function that strives to integrate established and newer findings.


Subject(s)
Action Potentials/physiology , Olivary Nucleus/physiology , Purkinje Cells/physiology , Animals , Models, Neurological , Motor Activity/physiology
16.
Cerebellum ; 17(5): 683-684, 2018 10.
Article in English | MEDLINE | ID: mdl-29931663

ABSTRACT

In the original version of this paper, the Title should have been written with "A Consensus paper" to read "Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper".

17.
Cerebellum ; 17(5): 654-682, 2018 10.
Article in English | MEDLINE | ID: mdl-29876802

ABSTRACT

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.


Subject(s)
Cerebellum/anatomy & histology , Cerebellum/physiology , Animals , Humans
18.
Nat Commun ; 9(1): 1099, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545572

ABSTRACT

It is hypothesized that the cerebellum implements a forward internal model that transforms motor commands into predictions about upcoming movements. The predictions are compared with sensory feedback to generate sensory prediction errors critical to controlling movements. The simple spike firing of cerebellar Purkinje cells both lead and lag movement consistent with representations of motor predictions and sensory feedback. This study tests whether this leading and lagging modulation provides the prediction and sensory feedback necessary to compute sensory prediction errors. Two manipulations of the visual feedback are used in rhesus monkeys performing pseudo-random tracking. Consistent with a forward model, delaying the visual feedback demonstrates that the leading simple spike modulation with position error is time-locked to the hand movement. Reducing the feedback shows that the lagged modulation is directly driven by visual inputs. Therefore, Purkinje cell discharge carries both the motor predictions and sensory feedback required of a forward internal model.


Subject(s)
Feedback, Sensory/physiology , Purkinje Cells/metabolism , Visual Perception/physiology , Animals , Female , Macaca mulatta , Male
19.
Endocrinology ; 159(3): 1328-1338, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29381778

ABSTRACT

Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown. Within the mouse cerebellum, we found that estrogen receptor activation of metabotropic glutamate receptor type 1a strongly enhances neurotransmission at the parallel fiber-Purkinje cell synapse. The blockade of local estrogen synthesis within the cerebellum results in a diminution of glutamatergic neurotransmission. Correspondingly, decreased estrogen availability via gonadectomy or blockade of aromatase activity negatively affects locomotor performance. These data indicate that locally derived, and not just gonad-derived, estrogens affect cerebellar physiology and function. In addition, estrogens were found to facilitate parallel fiber-Purkinje cell synaptic transmission in both sexes. As such, the actions of estradiol to support cerebellar neurotransmission and cerebellum-based behaviors might be fundamental to understanding the normal processing of activity within the cerebellar cortex.


Subject(s)
Cerebellar Cortex/physiology , Estrogens/physiology , Purkinje Cells/physiology , Synaptic Transmission/physiology , Animals , Aromatase , Aromatase Inhibitors/pharmacology , Castration , Cerebellum/metabolism , Estrogens/biosynthesis , Estrogens/deficiency , Female , Male , Mice , Motor Activity/physiology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/physiology , Receptors, Metabotropic Glutamate/physiology
20.
Neurobiol Dis ; 112: 35-48, 2018 04.
Article in English | MEDLINE | ID: mdl-29331264

ABSTRACT

Myotonic dystrophy (DM) is a progressive, multisystem disorder affecting skeletal muscle, heart, and central nervous system. In both DM1 and DM2, microsatellite expansions of CUG and CCUG RNA repeats, respectively, accumulate and disrupt functions of alternative splicing factors, including muscleblind (MBNL) proteins. Grey matter loss and white matter changes, including the corpus callosum, likely underlie cognitive and executive function deficits in DM patients. However, little is known how cerebral cortical circuitry changes in DM. Here, flavoprotein optical imaging was used to assess local and contralateral responses to intracortical motor cortex stimulation in DM-related mouse models. In control mice, brief train stimulation generated ipsilateral and contralateral homotopic fluorescence increases, the latter mediated by the corpus callosum. Single pulse stimulation produced an excitatory response with an inhibitory-like surround response mediated by GABAA receptors. In a mouse model of DM2 (Mbnl2 KO), we observed prolonged and increased responsiveness to train stimulation and loss of the inhibition from single pulse stimulation. Conversely, mice overexpressing human MBNL1 (MBNL1-OE) exhibited decreased contralateral response to train stimulation and reduction of inhibitory-like surround to single pulse stimulation. Therefore, altering levels of two key DM-associated splicing factors modifies functions of local cortical circuits and contralateral responses mediated through the corpus callosum.


Subject(s)
Alternative Splicing/physiology , Disease Models, Animal , Motor Cortex/metabolism , Myotonic Dystrophy/metabolism , RNA-Binding Proteins/biosynthesis , Animals , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Motor Cortex/physiopathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , RNA Splicing/physiology , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...