Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Fish Dis ; 47(9): e13984, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943549

ABSTRACT

A strategy for vaccine design involves identifying proteins that could be involved in pathogen-host interactions. The aim of this proteomic study was to determine how iron limitation affects the protein expression of Tenacibaculum dicentrarchi, with a primary focus on virulence factors and proteins associated with iron uptake. The proteomic analysis was carried out using two strains of T. dicentrarchi grown under normal (control) and iron-limited conditions, mimicking the host environment. Our findings revealed differences in the proteins expressed by the type strain CECT 7612T and the Chilean strain TdCh05 of T. dicentrarchi. Nonetheless, both share a common response to iron deprivation, with an increased expression of proteins associated with iron oxidation and reduction metabolism (e.g., SufA, YpmQ, SufD), siderophore transport (e.g., ExbD, TonB-dependent receptor, HbpA), heme compound biosynthesis, and iron transporters under iron limitation. Proteins involved in gliding motility, such as GldL and SprE, were also upregulated in both strains. A negative differential regulation of metabolic proteins, particularly those associated with amino acid biosynthesis, was observed under iron limitation, reflecting the impact of iron availability on bacterial metabolism. Additionally, the TdCh05 strain exhibited unique proteins associated with gliding motility machinery and phage infection control compared to the type strain. These groups of proteins have been identified as virulence factors within the Flavobacteriaceae family, including the genus Tenacibaculum. These results build upon our previous report on iron acquisition mechanisms and could lay the groundwork for future studies aimed at elucidating the role of some of the described proteins in the infectious process of tenacibaculosis, as well as in the development of potential vaccines.


Subject(s)
Bacterial Proteins , Fish Diseases , Flavobacteriaceae Infections , Iron , Oxidation-Reduction , Proteomics , Tenacibaculum , Up-Regulation , Iron/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Animals , Fish Diseases/microbiology , Tenacibaculum/genetics , Tenacibaculum/metabolism , Proteome , Virulence Factors/metabolism , Virulence Factors/genetics , Bass/microbiology
2.
J Fish Dis ; 47(9): e13965, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801516

ABSTRACT

The diversity of Tenacibaculum maritimum in Chile remains poorly understood, particularly in terms of antigenic and genetic diversity. This information is crucial for the future development of a vaccine against tenacibaculosis and would increase understanding of this important fish pathogen. With this aim, the biochemical, antigenic, and genetic characteristics were analysed for 14 T. maritimum isolates, recovered from diseased Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Chile between 1998 and 2022. Biochemical analysis showed a homogeneity among all the Chilean T. maritimum isolates and all four other strains included for comparison purposes. Serological characterization using dot-blot assaying revealed antigenic heterogeneity with the use of unabsorbed antisera. The majority of isolates showed cross-reactions, identifying three main serological patterns. When the PCR-based serotyping scheme was performed, the existence of antigenic heterogeneity was confirmed. Four Atlantic salmon isolates were 4-0; and most isolates, including the rainbow trout isolate, were 3-1 (n = 9). A turbot (Scophthalmus maximus) isolate was 1-0. Using an existing Multilocus Sequence Typing system, two newly identified sequence types (ST193 and ST198) in the database were detected. ST193 encompassed nine isolates obtained from Atlantic salmon and rainbow trout, while ST198 regrouped four isolates, all retrieved from diseased Atlantic salmon in 2022. These findings highlight significant antigenic and genetic diversity among the Chilean isolates. This information is useful for epizootiology and the selection of suitable candidate strain(s) for vaccine development against tenacibaculosis caused by T. maritimum in Chilean salmon farming.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Oncorhynchus mykiss , Salmo salar , Tenacibaculum , Animals , Fish Diseases/microbiology , Tenacibaculum/genetics , Tenacibaculum/isolation & purification , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Chile/epidemiology , Oncorhynchus mykiss/microbiology , Genetic Variation , Serotyping/veterinary , Genetic Heterogeneity , Aquaculture
3.
J Fish Dis ; 47(2): e13888, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37950508

ABSTRACT

Tenacibaculum dicentrarchi is the second most important pathogen in Chilean salmon farming. This microorganism causes severe skin lesions on the body surface of farmed fish. The bacterium can also adhere to surfaces and form biofilm, survive in fish skin mucus, and possess different systems for iron acquisition. However, the virulence mechanisms are still not fully elucidated. Outer membrane vesicles (OMV) are nanostructures released by pathogenic Gram-negative bacteria during growth, but none has been described yet for T. dicentrarchi. In this study, we provide the first reported evidence of the fish pathogen T. dicentrarchi producing and releasing OMV from 24 h after incubation, increasing thereafter until 120 h. Analyses were conducted with T. dicentrarchi TdCh05, QCR29, and the type strain CECT 7612T . The OMV sizes, determined via scanning electron microscopy, ranged from 82.25 nm to 396.88 nm as per the strain and incubation time point (i.e., 24 to 120 h). SDS-PAGE revealed that the number of protein bands evidenced a drastically downward trend among the T. dicentrarchi strains. In turn, the OMV shared five proteins (i.e., 22.2, 31.9, 47.7, 56.3, and 107.1 kDa), but no protein pattern was identical. A heterogeneous amount of protein, RNA, and DNA were obtained, depending on the time at which OMV were extracted. Purified OMV were biologically active and induced a cytotoxic effect in macrophage-enriched cell cultures from rainbow trout (Oncorhynchus mykiss) head kidneys. This is the first step towards understanding the role that OMV could play in the pathogenesis of T. dicentrarchi.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Tenacibaculum , Animals , Head Kidney , Fish Diseases/microbiology , Macrophages , Tenacibaculum/genetics
4.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37309564

ABSTRACT

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Subject(s)
Fish Diseases , Tenacibaculum , Animals , Iron/metabolism , Siderophores , Hemin/metabolism , Fish Diseases/microbiology , Tenacibaculum/genetics , Fishes
5.
Fish Shellfish Immunol ; 136: 108747, 2023 May.
Article in English | MEDLINE | ID: mdl-37059254

ABSTRACT

Tenacibaculosis caused by Tenacibaculum dicentrarchi is the second most important bacterial disease that affects the Chilean salmon industry. The impacted fish show severe external gross skin lesions on different areas of the body. The external mucus layer that covers fish skin contains numerous immune substances that act as one of the main defense barriers against microbial colonization and invasions by potential pathogens. The present in vitro study aimed to evaluate and elucidate the role of the external mucus layer in the susceptibility of Atlantic salmon (Salmo salar) to three Chilean T. dicentrarchi strains and the type strain. For this, mucus collected from healthy and diseased (i.e., with T. dicentrarchi) Atlantic salmon were used, and various antibacterial and inflammatory parameters were analysed. The T. dicentrarchi strains were attracted to the mucus of Atlantic salmon regardless of health status. All four strains adhered to the skin mucus and very quickly grew using the mucus nutrients. Once infection was established, different mucosal defense components were activated in the fish, but the levels of bactericidal activity and of other enzymes were insufficient to eliminate T. dicentrarchi. Alternatively, this pathogen may be able to neutralize or evade these mechanisms. Therefore, the survival of T. dicentrarchi in fish skin mucus could be relevant to facilitate the colonization and subsequent invasion of hosts. The given in vitro results suggest that greater attention should be given to fish skin mucus as a primary defense against T. dicentrarchi.


Subject(s)
Fish Diseases , Salmo salar , Tenacibaculum , Animals , Skin , Mucus , Health Status
7.
Braz J Microbiol ; 53(4): 2263-2272, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36307638

ABSTRACT

The weissellosis agent bacterium (WS08T = CBMAI 2730) was isolated from diseased rainbow trout (Oncorhynchus mykiss) in Brazil. The whole genome sequence of this strain was compared with the Mexican W-1 strain, also isolated from diseased rainbow trout, and with the Weissella ceti type strain CECT 7719 T (= 1119-1A-09 T = CCUG 59653 T), recovered from the beaked whale. Digital DNA-DNA hybridization pairwise analyses scored 98.7% between the Mexican W-1 and Brazilian WS08T but just 24.4% for both fish isolates compared to the W. ceti type strain CECT 7719 T. The 16S rRNA gene sequence comparisons with isolates of W. ceti, available at GenBank, were conducted. All rainbow trout-pathogenic isolates grouped close (97% bootstrap confirmation), but when this group was compared to the W. ceti type strain CECT 7719 T the similarity varied from 78.9 to 79.1%. Phenotypic assays were also conducted, and the W. ceti type strain diverged from WS08T and W-1 in the hydrolysis of aesculin, D-mannose, and potassium gluconate and in the hydrolysis of hippurate. Moreover, WS08T and W-1 showed weak growth at 5 °C whereas no growth was observed for W. ceti CECT 7719 T. The major fatty acids (> 10% total fatty acids) presented by WS08T and W-1 were summed feature 8 (C18:1 ω7c/C18:1 ω6c), summed feature 3 (C16:1 ω6c/C16:1ω7c), and C16:0. The results of phylogenetic and phenotypic analyses clearly differentiated the W. ceti CECT 7719 T type strain from the assessed pathogenic strains obtained from rainbow trout. Therefore, Weissella strains isolated from rainbow trout, here represented by strain WS08T (= CBMAI 2730), should be known as members of a novel species for which the name Weissella tructae sp. nov. is proposed.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Weissella , Animals , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/microbiology , Weissella/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny , Whales/genetics , Fish Diseases/microbiology , Fatty Acids , DNA , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Nucleic Acid Hybridization
8.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080235

ABSTRACT

Microsorum scolopendia (MS), which grows on the Chilean island of Rapa Nui, is a medicinal fern used to treat several diseases. Despite being widely used, this fern has not been deeply investigated. The aim of this study was to perform a characterization of the polyphenolic and flavonoid identity, radical scavenging, antimicrobial, and anti-inflammatory properties of MS rhizome and leaf extracts (RAE and HAE). The compound identity was analyzed through the reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled with mass spectrometry. The radical scavenging and anti-inflammatory activities were evaluated for DPPH, ORAC, ROS formation, and COX inhibition activity assay. The antimicrobial properties were evaluated using an infection model on Human Dermal Fibroblast adult (HDFa) cell lines incubated with Staphylococcus aureus and Staphylococcus epidermidis. The most abundant compounds were phenolic acids between 46% to 57% in rhizome and leaf extracts, respectively; followed by flavonoids such as protocatechic acid 4-O-glucoside, cirsimaritin, and isoxanthohumol, among others. MS extract inhibited and disaggregated the biofilm bacterial formed and showed an anti-inflammatory selective property against COX-2 enzyme. RAE generated a 64% reduction of ROS formation in the presence of S. aureus and 87.35% less ROS in the presence of S. epidermidis on HDFa cells. MS has great therapeutic potential and possesses several biological properties that should be evaluated.


Subject(s)
Anti-Infective Agents , Ferns , Polypodiaceae , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species , Staphylococcus aureus
9.
J Fish Dis ; 44(7): 1015-1024, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33683739

ABSTRACT

Extracellular vesicles (EVs) in bacteria have been implicated in invasive and, through enzymes, infective processes. One Gram-positive bacterium lacking any EV research, despite having commercial impacts on the aquaculture industry, is Renibacterium salmoninarum. We addressed this gap in knowledge by utilizing scanning electron microscopy to provide the first reported evidence for the production of EVs by R. salmoninarum strain H-2. Dispersive light scattering detected that the EVs were heterogeneous in size, and the protein compositions were similar to the bacterial membrane and contained the virulent protein factors p22 and p57. The EVs additionally had a concentrated negative charge compared with R. salmoninarum H-2, as determined by Z potential. Finally, these particles seemed to play a role in host invasion in vitro in the salmon head kidney cell line, as demonstrated by the occurrence of a cytotoxic effect within the first 48 hr post-infection. Higher EV concentrations (i.e. 52.6 µg/ml) were more toxic than R. salmoninarum H-2. This information serves as a foundation to develop and test possible uses for R. salmoninarum EVs in salmon aquaculture, inspiring future advances against bacterial kidney disease.


Subject(s)
Extracellular Vesicles , Animals , Cell Line , Cell Survival , Fishes , Renibacterium/physiology
10.
J Fish Dis ; 43(5): 621-629, 2020 May.
Article in English | MEDLINE | ID: mdl-32293041

ABSTRACT

Vibriosis outbreaks due to Vibrio ordalii occur globally, but Chilean salmon aquaculture, in particular, has suffered significant monetary losses in the last 15 years. Little is known about the virulence mechanisms employed by V. ordalii. However, most Vibrio pathogens (e.g., Vibrio anguillarum, a very close taxonomic species) present outer membrane vesicles (OMVs) that are released extracellularly and implicated in the delivery of virulence factors to host cells. This study provides the first reported evidence of the fish pathogen V. ordalii producing and releasing OMVs under normal growth conditions. Analyses were conducted with the V. ordalii strain Vo-LM-18 and the type strain ATCC 33509T . For comparative purposes, the reference strain V. anguillarum ATCC 43307 was employed. The average size for the three Vibrio strains was 0.215 ± 0.6 µm (via scanning electron microscopy) or between 0.19 and 1.8 µm (via dynamic light scattering), with each bacterium presenting a wide range. SDS-PAGE revealed similarities in OMV patterns, but neither total nor external proteins were identical. Comparing V. ordalii ATCC 33509T and Vo-LM-18, bands were most evident in the total proteins, and the greatest degree of similarity in OMV profiles was between 37 and 50 kDa. The purified OMVs demonstrated haemolytic enzyme activity, which could play a role during V. ordalii infection. These data represent an initial step towards gaining new insights into this virulence factor, of which a lot is known in other pathogenic microorganisms.


Subject(s)
Bacterial Outer Membrane/metabolism , Extracellular Vesicles/metabolism , Fish Diseases/microbiology , Salmo salar , Vibrio Infections/veterinary , Vibrio/physiology , Vibrio/pathogenicity , Animals , Vibrio Infections/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL